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a  b  s  t  r  a  c  t

The  replacement  of  indigenous  vegetation  by  commercial  alien  plantations  can  strongly  affect  inverte-
brate  species  richness  and  composition.  This  has been  demonstrated  for some  invertebrate  taxa  in  the
Fynbos vegetation  of  the  Western  Cape,  but the response  of  litter-dwelling  Collembola  has  not  been
documented.  Here  we  compared  the  richness  and  abundance  of litter-dwelling  Collembola  assemblages
in  Pinus  radiata  plantations  and  in  adjacent  rehabilitated  Cape  Flats  Sand  Fynbos  (CFSF)  in  the Tokai
Forest  Reserve,  Western  Cape,  South  Africa.  A  total  of 48  Collembola  morphospecies  was  identified,  of
which  14  species  were  recorded  exclusively  from  the  pine  plantations,  and  six exclusively  from  the  CFSF.
Abundance  and  morphospecies  richness  was  higher  in  the  pine  plantations  than  in  the  CFSF,  with  34
morphospecies  found  in  the  CFSF,  and  42  morphospecies  in  the pine  plantations.  Fourteen  species  were

likely  invasive  taxa,  of  which  eight  were  found  in  CFSF,  and  13  in  the pine  plantations.  Multivariate  anal-
yses  indicated  significant  differences  in  the  assemblages  of  the  two  habitat  types  based  on  abundance,
but  using  presence–absence  data  only,  no difference  was  found.  Significant  relationships  were  found
between  springtail  richness  and abundance  and  site  humidity,  which  differed  between  the  CFSF  (drier)
and  pine  plantation  (moister),  likely  accounting  for  the differences  in  richness  and  abundance  among
habitat  types.
ntroduction

Located at the south-western tip of Africa, the Fynbos Biome is
idely known for its high floral diversity and endemicity (Goldblatt

997; Goldblatt and Manning 2002). Fynbos, the predominant veg-
tation complex of the biome (Rebelo et al. 2006), is threatened
y a variety of direct and indirect anthropogenic factors, including
rbanization, agriculture, biological invasions by woody species,
utrient loading, and climate change (Richardson et al. 1996;
ouget et al. 2003; Hannah et al. 2005; Rebelo et al. 2006; Gaertner
t al. 2009; Wilson et al. 2009). From the landscape change per-
pective, alien pine plantations and invasions by pines into natural
reas not only have a substantial effect on plant species richness and
omposition, but they also affect other ecosystem characteristics
nd functioning profoundly, with the exception perhaps of soil pH
nd N (Richardson et al. 1992, 1996; Richardson and Cowling 1992;
tock and Allsopp 1992; Richardson and Higgins 1998; Scholes and

owicki 1998; van Wilgen 2009). The impacts on plant commu-
ity structure and functioning also translate into significant effects
n invertebrate assemblages. By comparison with adjacent Fynbos

∗ Corresponding author. Tel.: +27 218083396.
E-mail address: cjanion@sun.ac.za (C. Janion).

031-4056/$ – see front matter ©  2012 Elsevier GmbH. All rights reserved.
oi:10.1016/j.pedobi.2012.03.002
© 2012 Elsevier GmbH. All rights reserved.

vegetation, areas dominated by pines have lower invertebrate rich-
ness and abundance, at least in the case of the few groups that have
been assessed (Donnelly and Giliomee 1985; Pryke and Samways
2009).

Within the Fynbos vegetation complex many of the vegetation
types are considered threatened. In particular, Cape Flats Sand Fyn-
bos (CFSF) is listed as critically endangered mostly owing to its
localized occurrence (Cape Town Area only), and the substantial
transformation of more than 80% of its original area by urban-
ization and afforestation (Holmes 2008). The few, small, remnant
fragments of CFSF have been accorded considerable conservation
priority, and large areas of pine plantations are being removed as
part of a long-term rehabilitation programme (e.g. c. 150 ha in the
Tokai Forest Reserve) (Rebelo et al. 2006). Despite the conservation
significance of the CFSF little is known about its invertebrate fauna
by comparison with other vegetation types in the Fynbos biome
(e.g. Picker and Samways 1996; French and Major 2001; Botes et al.
2006, 2007; Procheş and Cowling 2006; Pryke and Samways 2009,
2010). Moreover, investigations of the effects of landscape trans-
formation on CFSF seem limited to impacts on vascular plants and

on the avifauna (Rebelo et al. 2006; Dures and Cumming 2010).
More generally, restricted knowledge of invertebrate responses to
landscape transformation is not uncommon for the region. Owing
partly to the taxonomic impediment (Samways 2007), and partly

dx.doi.org/10.1016/j.pedobi.2012.03.002
http://www.sciencedirect.com/science/journal/00314056
http://www.elsevier.de/pedobi
mailto:cjanion@sun.ac.za
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Table 1
The year of establishment at each sampling site.

Sampling site Year of establishment

Pine 1 1996
Pine 2 1973
Pine 3 1995
Pine 4 1997
Cape Flat Sand Fynbos 1 1998
Cape Flat Sand Fynbos 2 2004
04 W.P.A. Liu et al. / Pedo

o the significance of insects as pollinators and seed-dispersers
n Fynbos (Johnson 1992), investigations tend to be focussed on
ollinating insects, ants, and dragonflies (e.g. French and Major
001; Donaldson et al. 2002; Braschler et al. 2010; Samways
nd Sharratt 2010), and only occasionally consider other groups
Witt and Samways 2004; Pryke and Samways 2009). Indeed, the
ess conspicuous soil mesofauna, such as springtails and mites,
s largely neglected, despite its widely acknowledged significance
n ecosystem functioning (Brussaard et al. 1997; Bengtsson 1998;
ehan-Pelletier and Newton 1999; Wardle et al. 2004).

Such a situation applies particularly to the springtails. Although
hey are widely distributed in virtually all terrestrial habitats
Hopkin 1997), make a significant contribution to soil system func-
ioning (Rusek 1998), and are likely to show significant diversity
nd endemism in South Africa (Yosii 1959; Coates 1968a,b; Janion
t al. 2011a)  with concomitant implications for ecosystem func-
ioning (Bengtsson et al. 2011, 2012), detailed ecological studies
re lacking, and the diversity of the group in both disturbed and
ndisturbed Fynbos areas has not been investigated. Therefore, we
rovide here an assessment of springtail diversity in a Cape Flats
and Fynbos system and the adjacent areas dominated by managed
inus radiata plantations.

aterial and methods

tudy site

The study was conducted in Tokai Forest Reserve (TFR)
S34◦3.416′ E18◦25.659′), part of Table Mountain National Park in
he Western Cape Province of South Africa. This particular site was
hosen largely because, despite being under rehabilitation, it is one
f the most extensive remnant patches of CFSF. Most of the other
atches are tiny remnants surrounded by urban areas, ‘mismanaged’

n a variety of ways (Rebelo et al. 2006: 140), and subject to sub-
tantial edge effects. The area has a Mediterranean-type climate,
ith mean daily minimum and maximum monthly temperatures

f 7.3 ◦C and 27.1 ◦C for July and February, respectively, and a pre-
ominantly winter rainfall regime (c. 576 mm year−1, with a peak
rom May  to August, Rebelo et al. 2006). Located on acidic and gray
egic sands, the predominant indigenous vegetation type of the TFR
s Cape Flats Sand Fynbos, which is characterized by four main plant
amilies, viz.  Proteaceae, Restionaceae, Asteraceae (in drier areas)
nd Ericaceae (in wetter areas), and dominated by dense, relatively
all shrubs (Rebelo et al. 2006). A total of 108 vascular plant species
s known from the CFSF, of which one is extinct and three cur-
ently exist in cultivation and are being reintroduced into remnant
atches (Rebelo et al. 2011). As a consequence of the history of
ommercial afforestation of the area, remnant patches of CFSF are
nterspersed among 460 hectares of managed vegetation, predom-
nately planted Pinus radiata,  and small patches of cleared areas
hat are being restored to Sand Fynbos. The reserve has been under
he management of South African National Parks (SANParks) since
005.

ampling and species identification

Sampling was conducted in mid-winter between 27th July and
6th August 2010. Mid-winter is typically a period of high precip-

tation and a period of high Collembola activity (Bengtsson et al.
011). Sampling sites were selected within the lower section of
he reserve to minimize elevation differences among sites. A total

f eight independent sampling sites was selected: four pine plan-
ation patches (pine habitat) which were planted between 1973
nd 1997, and four CFSF patches (CFSF habitat) which have been
ehabilitated after pine removal between 1998 and 2007 (Table 1;
Cape Flat Sand Fynbos 3 2007
Cape Flat Sand Fynbos 4 2005

SANParks data). This age variation was  unavoidable, as the CFSF
sites are critically endangered and are being restored. However,
for one of the CFSF sites the age was within a few years of the
youngest pine plantations, and we  considered age effects much less
of a potential confounding factor than the edge effects in smaller,
but perhaps older, patches of CFSF elsewhere (see Introduction),
as has been found for other taxa (Rebelo et al. 2006, 2011; Dures
and Cumming 2010). The largest and smallest distances between
sites were 1714 m and 171 m,  respectively. Sampling took place
approximately once every week and sampling was completed for
two to three sites per sampling event. Within each sampling site,
two parallel transects were laid out approximately 10 m apart and
five litter samples were collected at 10 m intervals along both tran-
sects, resulting in 10 samples per site. The sampling for both habitat
types was undertaken at least 50 m into the vegetation to eliminate
edge effects. Thus, a total of 80 samples was collected (i.e. eight
sites with 10 samples in each). Collembola were sampled by tak-
ing one liter of surface organic litter (approximately 5 cm in depth).
A 1 m2 grid was  placed over each sampling point, and the sample
was collected within the grid to fill the one liter container. All of the
organic litter samples within CFSF were collected under Metalasia
muricata, which was one of predominant indigenous shrubs within
the Sand Fynbos patches. Within the pine plantation sites, organic
litter samples were collected directly under P. radiata.

Ambient temperature and relative humidity were taken in the
field approximately 3 cm above the soil surface at the shaded side
of each sampling point by using a handheld Vaisala HM32 ther-
mohygrometer (Vaisala, Finland). This resulted in 80 measures
of temperature and humidity (40 for each habitat type). In addi-
tion, two  soil samples were collected haphazardly at two sampling
points in each site and were mixed together to form a single sam-
ple of 450 g, resulting in a sample size of four for each habitat type.
These soil samples were analyzed for soil type, pH, P (Bray and Kurtz
1945), C, N, Mg  and Ca by a commercial service provider (BemLab
(Pty Ltd.), Somerset West, South Africa).

The litter samples collected for invertebrate extractions were
kept cool in an insulated container and transported to the labora-
tory for extraction within 6 h of collection, to minimize death of the
sampled Collembola and the risk of them being consumed by preda-
tors such as spiders (Rusek 1998; Hopkin 2007). Collembola were
extracted from the litter using Berlese–Tullgren funnel extraction
(see Macfadyen 1953). Each sample was  extracted individually and
the Collembola stored in 99.9% ethanol. Individuals were assigned
to morphospecies using external morphological characteristics or
to species level, where possible, using European keys (Fjellberg
1998, 2007; Bretfield 1999; Potapov 2001; Hopkin 2007; Bellinger
et al. 2011) and information currently being collected by a large
project within the Centre of Excellence for Invasion Biology in col-
laboration with specialists in France, Norway and Sweden (Janion
et al. 2011a,b; Potapov et al. 2011). The use of morphospecies

enables rapid evaluation of the invertebrate assemblages in ques-
tion by avoiding the need for complete species identifications.
Although the approach has several problems, one of us (CJ) has
considerable experience with the Fynbos fauna (e.g. Janion et al.
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Fig. 1. Non-metric MDS  ordination of the sites in each of the sampled habitats
W.P.A. Liu et al. / Pedo

011a,b; Potapov et al. 2011), and we have confidence that the
arge majority (>95%) of the species delimitations refer to single
pecies, even where species-level names for these taxa are not yet
vailable. Similarly, invasive species status was  assigned based on
hether taxa at the given level of identification are considered

ypical of Africa or of the Southern Hemisphere generally, or are
onsidered are of European origin using keys available (Fjellberg
998, 2007; Potapov 2001; Hopkin 2007). All sorting was done by
ne researcher (WPAL) using a Leica MZ  7.5 microscope, and the
pecies delimitations assessed by a second (CJ). Therefore, the data
re comparable between the eight sites. The numbers of individuals
or each morphospecies in each site were counted.

tatistical analysis

Sampled-based rarefaction curves for Collembola were assem-
led for CFSF and pine plantation sites to establish the

evel of sampling efficiency (EstimateS V8.2, Colwell 2009,
ttp://viceroy.eeb.uconn.edu/estimates; Gotelli and Colwell 2001).
hese curves assess the number of expected species from the
nown number of observed individuals in the samples (Gotelli
nd Colwell 2001). The non-parametric Incidence Coverage Esti-
ator (ICE), Michaelis–Menten, Chao 2 and first-order Jackknife

ichness estimators were selected to estimate the sample size ade-
uacy (Palmer 1990; Colwell and Coddington 1994; Chazdon et al.
998; Brose 2002). These are known as useful estimators because
hey are most stable even with small sample sizes (Magurran
004). Sampling may  be considered as sufficient when the sample-
ased rarefaction curves and the four non-parametric estimators
onverge closely at the highest observed morphospecies richness
Magurran 2004).

Differences in site morphospecies richness and abundance
mong sites were examined using a generalized linear model
ssuming a Poisson distribution with a log-link function, corrected
or overdispersion where necessary (implemented in Statistica V.
0.0, StatSoft, Tulsa, Oklahoma). The extent to which CFSF and pine-
ominated sites differ in assemblage structure was investigated
sing routines available in PRIMER V 5.0 2001 (Plymouth Rou-
ine in Multivariate Ecological Research, see Clarke and Warwick
001). The data were double square-root transformed prior to
nalysis to weight common and rare morphospecies equally. The
ray–Curtis similarity measure was used to construct a similar-

ty matrix among all sites (abundances of morphospecies were
ummed across the ten samples per site). Cluster analysis was
hen undertaken using group averaging, and a One-way Analysis
f Similarity (ANOSIM) was conducted to determine whether the
ssemblages differ in structure (Clarke and Warwick 2001). The
evel of difference among habitat types increases as the significant
lobal R statistic approaches one. Non-metric multi-dimensional
caling (nMDS) (using 500 random restarts) was used to display the
elationships among sampling sites. The analyses were repeated
fter transformation of the data to presence–absence only to deter-
ine the extent to which differences in the assemblages among

abitat types could be explained by differences in species rich-
ess and identity rather than by variation in abundance among
pecies. For further investigation of the numbers of rare species
n the two habitat types, common and rare species were defined
s the 25% most abundant and 25% least abundant species, respec-
ively, within the assemblages of each habitat type (the proportion
f species method – Gaston 1994).

Soil parameters (pH, C, N, P, Ca and Mg)  were compared between
he CFSF and pine-dominated habitats using Mann–Whitney U-

ests, while temperature and relative humidity were compared
sing a one-way analysis of variance, all implemented in Statistica
.10.0. The relationships between temperature and relative humid-

ty, and species richness and abundance across sites were examined
based on (A) abundance data (transformed to weight common and rare species
equally); among habitat ANOSIM R = 0.531, P < 0.05. Stress = 0.06. (B) Based on
presence–absence data only; among habitat ANOSIM R = 0.385, P > 0.05. Stress = 0.03.

using Pearsons product-moment correlation coefficients (Statistica
V.10.0).

Results

A total of 21,728 individuals from 48 Collembola morphospecies
was collected from the pine plantation and Cape Flats Sand Fynbos
sites in Tokai Forest Reserve (Table 2), of which 13,996 individuals
and 42 morphospecies were found in the pine plantations, and 7732
individuals from 34 morphospecies in the CFSF. The sample-based
species rarefaction curves and the non-parametric estimators con-
verged closely at the highest observed morphospecies richness for
both habitats (Supplementary Figs. S1 and S2), and typically well
before the full sample total of 40 for each habitat type, indicating
that the sampling for morphospecies richness estimates was suffi-
cient. Of the 48 morphospecies collected, 12 were considered rare
(i.e. in the lower abundance quartile), and of these species two were
shared among the pine and CFSF habitats (Dicyrtomina cf. saundersi
and Seira sp. 3) (Table 2). Six morphospecies, of which four were
rare, were unique to the CFSF, while 14 morphospecies, of which
six were rare, were unique to the pine plantation. Mean morphos-
pecies richness differed significantly among sites (Pine: 13.5 ± 0.56,
CFSF: 11.3 ± 0.51, �2 = 7.6, P = 0.006) as did mean abundance (Pine:
350 ± 48, CFSF: 193 ± 45, �2 = 8.5, P = 0.004).

An ANOSIM based on the abundance data revealed that the
Collembola assemblages of the CFSF and pine plantation habitats
differ significantly (Global R = 0.531, P = 0.029) (Fig. 1a), although
with some variation within these groups. Pine plantation site 1
had the highest morphospecies richness and abundance of all the
sampling sites (Fig. 2a and b), while CFSF 3 had the lowest morphos-

pecies richness (Fig. 2a) and CFSF 1 had the lowest morphospecies
abundance (Fig. 2b). Thirteen presumed invasive species were iden-
tified, with eight found in the CFSF, and 12 found in the pine
plantations (Table 2). Suspected invasive species were found only

http://viceroy.eeb.uconn.edu/estimates
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Table  2
Abundance of Collembola morphospecies from Cape Flat Sand Fynbos (CFSF) and Pinus radiata plantations. The abundance values of the 25% least abundance morphospecies
in  the samples are indicated in bold.

Order Family Species CFSF Pine Invasive/endemic

Poduromorpha Hypogastruridae Ceratophysella cf. denticulata 90 780 Invasive
Brachystomellidae Brachystomella sp. 752 801 ?

Setanodosa sp. 37 4 Endemic
Neanuridae Neanura cf. muscorum 3 23 Invasive

Paleonura sp. 0 3 Endemic
Micranurida sp. 13 163 ?
Aethiopella cf. flavoantennata 0 1 Endemic

Onychiuridae Orthonychiurus sp. 0 21 Invasive
Tullbergiidae Mesaphorura cf. macrochaeta 249 69 Invasive

Tullbergia sp. 1082 838 ?
Entomobryomorpha Entomobryidae Entomobrya cf. multifasciata 279 803 Invasive

Entomobrya sp. 1 247 465 ?
Entomobrya sp. 2 1 0 ?
Entomobrya sp. 3 2 0 ?
Entomobrya sp. 4 0 23 ?
Lepidocyrtus sp. 1 331 1486 ?
Lepidocyrtus sp. 2 0 78 ?
Pseudosinella sp. 35 23 ?
Seira cf. barnardi 0 12 Endemic
Seira sp. 1 129 253 Endemic
Seira sp. 2 3 11 Endemic
Seira sp. 3 2 2 Endemic
Seira sp. 4 5 19 Endemic
Seira sp. 5 4 28 Endemic

Isotomidae Subisotoma sp. 0 6 ?
Cryptopygus cf. caecus 237 496 ?
Cryptopygus sp. 1 516 15 Endemic
Cryptopygus sp. 2 714 105 Endemic
Isotomurus cf. maculatus 0 332 Invasive
Isotomurus cf. palustris 0 192 Invasive
Parisotoma sp. 1 1803 721 Endemic
Parisotoma sp. 2 900 4683 Endemic

Tomoceridae Tomocerus cf. minor 0 3 Invasive
Neelipleona Neelidae Megalothorax sp. 2 164 Invasive

Neelus sp. 0 13 Invasive
Symphypleona Mackenziellidae Mackenziella cf. psocoides 22 0 Invasive

Arrhopalitidae Arrhopalites sp. 0 5 ?
Bourletiellidae Bourletiella sp. 34 0 ?
Dicyrtomidae Dicyrtomina cf. ornata 30 22 Invasive

Dicyrtomina cf. saundersi 4 3 Invasive
Dicyrtomina sp. 3 0 ?

Katiannidae Sminthurinus cf. elegans 0 906 Invasive
Sminthurinus sp. 1 59 38 ?
Sminthurinus sp. 2 30 34 ?
Sminthurinus sp. 3 0 21 ?

Sminthurididae Sminthurides sp. 1 7 0 ?
p. 2 
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Sminthurides s
Sphaeridia sp.

Total  

n Pine 2, including Isotomurus cf. maculatus,  Isotomurus cf. palustris,
rthonychiurus sp. and Sminthurinus cf. elegans. The only invasive
pecies that was only found in CFSF was Mackenziella cf. psocoides.
he high morphospecies diversity found in CFSF 2 was  comparable
o that of some of the pine sites (Fig. 2). When the ANOSIM was
epeated using presence–absence data only, no significant differ-
nce was found among the assemblages of the two  habitat types
Global R = 0.385, P = 0.057, Fig. 1b). Thus, the differences among
he habitat types had more to do with the relative abundances of
he species present than a clear distinction between assemblage

embership in the two habitats.
No significant differences were found in pH, C, N, P, Ca or Mg

mong the habitat types (Mann–Whitney U = 4.0–8.0, P > 0.3 in all
ases). By contrast, the habitat types differed significantly in tem-
erature (ANOVA F(1, 78) = 23.4, P = 0.0001; Pines 17.2 ± 0.26 ◦C;
FSF 19.0 ± 0.26 ◦C, mean ± S.E.) and relative humidity (ANOVA

(1,78) = 35.3, P = 0.00001; Pines 68.5 ± 1.1%; CFSF 59.3 ± 1.1%).
oreover, the two variables were strongly, negatively related

cross the sites (r = −0.79, P < 0.001). Significant relationships were
lso found between morphospecies richness and both temperature
37 30 ?
70 301 ?

7732 13,996

(r = −0.24, P = 0.03) and humidity (r = 0.33, P = 0.003), and abun-
dance and both temperature (r = −0.22, P = 0.049) and humidity
(r = 0.26, P = 0.02, Fig. 3).

Discussion

Despite the conservation significance of Cape Flats Sand Fynbos
(CFSF), few assessments of the diversity of groups other than the
vascular plants have been made for this vegetation type, and studies
of impacts of land transformation are restricted to vascular plants
and birds (Rebelo et al. 2006, 2011; Dures and Cumming 2010). Our
assessment found a total richness of 48 springtail morphospecies
across both the CFSF and pine plantation, with 34 species in the
former and 42 in the latter. Owing to the taxonomic complexity of
some groups (e.g. Seira, Tullbergiidae), this may  be an underesti-

mate, although sampling had clearly gone to completion, and we
consider our species-level assignments accurate. A richness of 48
species for a total area of 2 km2 is in keeping with that found in
other areas (see Petersen and Luxton 1982).
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ig. 2. (A) Mean species richness and (B) abundance per site. The error-bars indicate
tandard error. P = pine sites, CFSF = Fynbos sites.

The mean site morphospecies richness of 11–14 (CFSF and
ine plantation, respectively) is slightly higher than that found for
he combined epigaeic fauna (i.e. millipedes, scorpions, harvest-

en, beetles, ants) examined in the same general area by Pryke
nd Samways (2010),  whilst abundance was very much higher
193–350 individuals in CFSF and pine plantation, respectively)
ompared with site abundances of less than 100. Springtail site
ean richness and abundance is also well within the range found

or other groups of epigaeic invertebrates investigated in the Fyn-

os, including spiders, ants, and beetles, and toward the upper end
f the values found for the latter taxa (French and Major 2001;
atsirarson et al. 2002; Witt and Samways 2004; Botes et al. 2006,
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2007). Thus, it is clear that the springtails form an important com-
ponent of epigaeic invertebrate diversity both in the CFSF and pine
plantations, as has been recorded elsewhere for this group (Hopkin
1997; Rusek 1998). They are likely also to have much functional sig-
nificance in these habitats, given that springtails have been shown
to have an important role in nutrient cycling elsewhere in the
Renosterveld and Fynbos vegetation complexes (Bengtsson et al.
2011, 2012).

By contrast, the extent to which the springtail fauna is restricted
to either the location generally, or to the CFSF is not completely
clear, mostly because comprehensive investigations of sites else-
where in the Fynbos biome have yet to be completed (see discussion
in Janion et al. 2011a). At least on the local scale, in this study, it is
clear that CFSF has six unique morphospecies (Sminthurides sp. 1.,
Bourletiella sp., Dicyrtomina sp., Entomobrya sp. 2, Entomobrya sp.
3, Mackenziella cf. psocoides) (Table 2), of which one is thought to
be invasive. However, the significance of this finding is tempered
by the fact that the pine plantation included 14 unique morphos-
pecies, of which five are thought to be invasive. Indeed, the invasive
species in the pine plantation were typically much more abundant
than the invasive species in the CFSF (Table 2).

These results suggested that substantial differences in the
assemblages of the two  habitat types should be found. Although
such a difference was  not apparent based only on species identity,
it was indeed the case in terms of diversity (i.e. abundance variation
among species), and supports other studies showing marked diver-
sity differences among habitat types in the Fynbos, and in the Table
Mountain area specifically (French and Major 2001; Ratsirarson
et al. 2002; Witt and Samways 2004; Pryke and Samways 2009,
2010). Moreover, the pine plantation springtail assemblage had,
on average, both a significantly higher abundance and morphos-
pecies richness than the assemblage in the CFSF. Clearly these
differences are not attributable to variation in soil nutrient status
because no among-habitat type differences were found in the vari-
ables measured (pH, C, N, P, Ca, Mg). Rather, it seems likely that the
temperature and relative humidity differences among sites were
responsible for the among-habitat type differences in abundance,
morphospecies richness and assemblage structure. Springtails typ-
ically show substantial sensitivity to desiccation (Choi et al. 2002;
Kærsgaard et al. 2004; Chown et al. 2007), and high humidity, low
temperature sites would clearly benefit them because both act to
reduce the differences in water activity between the organism and
its surrounding environment (Wharton 1985; Harrisson et al. 1991;
Hopkin 1997; Chown et al. 2011). High humidity in the pine plan-
tation is likely associated with the substantial needle litter layer, as
is typical of other pine forest sites (Scholes and Nowicki 1998). The
favorable conditions in the pine plantation likely also meant a more
favorable environment for the suspected invasive species, which
reached considerable densities in the case of Sminthurinus cf. ele-
gans, Entomobrya cf. multifasciata and Ceratophysella sp. (Table 2).
Thus, it appears that the non-indigenous vegetation promotes the
success of other alien species, an interaction which elsewhere has
been known to develop into a substantial synergy known as inva-
sional meltdown (Simberloff 2006). Although this might not turn
out to be the case here, the changes in springtail assemblages found,
including the increase in the abundance and richness of invasive
species, suggest that the invasion of natural Fynbos areas, by pines,
as is occurring elsewhere in the region (van Wilgen 2009) may pro-
mote invasion by springtail species. Whether this is taking place
deserves investigation given the demonstration both in the Fynbos
Biome and elsewhere that springtails may  substantially affect soil
system functioning (Brussaard et al. 1997; Bengtsson 1998; Wardle

et al. 2004; Bengtsson et al. 2011, 2012).

In conclusion, the current study has shown that the CFSF
houses a diverse assemblage of springtails and that pine planta-
tions are even richer, though they also contain greater richness and
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bundance of invasive species. As the particular area (Tokai Forest
eserve) is rehabilitated through the removal of pine plantations,
pringtail abundance is likely to decline given changing litter lev-
ls and abiotic conditions. However, it seems likely that among
he springtails the invasive species will be lost, so returning the
ystem perhaps to a state more similar to that of untransformed
ynbos. However, if the rehabilitated areas were invaded by a dif-
erent plant species which has substantial impacts on both edaphic
ariables and on humidity and temperature this might not take
lace. One species that is capable of such transformation is Acacia
aligna (Yelenik et al. 2004; Le Maitre et al. 2011), and early indi-
ations suggest that it might indeed be increasing in abundance
n the area (M.A. McGeoch, personal communication). Future work
hould determine the extent to which this landscape transforming
pecies alters springtail assemblages.
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