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The impact of pine plantations and alien invertebrates on native forest and fynbos 

invertebrate communities in Table Mountain National Park 

Charmaine Uys (February 2012) 

 

ABSTRACT 

While the Cape Peninsula (South Africa) is renowned for its exceptional plant and invertebrate 

diversity and endemism, extensive alien plant invasions and exotic pine plantations threaten 

and reduce native species richness. This study frames invasion ecology theory in a 

conservation context, and examines the impact of planting and felling pine on litter invertebrate 

communities, by comparing invertebrate diversity between pine plantations and native 

vegetation. Impacts of the worst invasive alien invertebrate (Argentine ant, Linepithema humile) 

and other alien invertebrate species are investigated. This is one of the first attempts to 

inventory and quantify impacts of non-ant alien invertebrates in Table Mountain National Park. 

The entire ground-dwelling invertebrate community was sampled at 31 sites in summer 

2008/2009, using soil cores, leaf litter samples, pitfall traps, sugar-baited ant traps and decayed 

logs. A total of 112 404 individuals, representing 728 species (10 classes and 38 orders), 

including nine Cape Peninsula endemic and 19 alien species, was collected. Pine plantations 

supported lower species richness and abundance, and different community assemblages, 

compared to Afrotemperate forest, but similar species richness to fynbos. This supports 

previous local studies and global trends. Pine plantations shared fewer species with fynbos than 

forest, and negatively affect fynbos-specialist invertebrates, because afforestation reduced 

available fynbos habitat. Alien species richness was similar across habitats. Argentine ants, like 

most other alien species identified, were present in all habitats. The impact of Argentine ant 

invasion on native ant communities was evaluated using species richness and community 

composition analyses, species co-occurrence patterns (C-score), and the functional group 

approach. The comparative approach adopted provided no evidence for displacement, 

impoverishment, or community disassembly. No clear impacts of the 18 non-ant alien species 

on the abundance, species richness, or community composition of corresponding native taxa 

were detected. Disturbance history offers a more parsimonious explanation for the trends 

observed, particularly in fynbos. However, carnivorous molluscs require careful monitoring, 

given their abundance and known impacts elsewhere. Using a reiterative process and IndVal, 

two ant species (Pheidole capensis and Camponotus bertolinii) were selected as ecological 

indicators of restoration progress in fynbos following clear-felling of pine. Ants similarly have 

application for monitoring in other Mediterranean-type ecosystems impacted by invasive pines. 
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CHAPTER 1. INTRODUCTION 

 

Setting the scene 

 

Invasive alien species are the second leading cause of global biodiversity loss (Wilcove et al., 

1998; Simberloff, 2001), and interact additively or synergistically with the most important driver 

of loss, habitat destruction (Didham et al., 2005). Alien species are those that did not originate 

from a geographic region in question (Richardson et al., 2000; Pyšek et al., 2004). Alien species 

span a naturalisation-invasion continuum (reviewed in Pyšek & Richardson, 2010), and become 

invasive when they spread widely in the newly occupied region (Kolar & Lodge, 2001). As such, 

biological invasions are recognised as global drivers of environmental change (Millennium 

Ecosystem Assessment, 2005). Biological invasions are on par with climate change as one of 

the hottest contemporary research topics within ecology, with a recent exponential increase in 

interest in the discipline of invasion ecology, to match the escalating global biological invasion 

crisis (Pyšek et al., 2006; Richardson & Pyšek, 2008; Davis, 2009). 

It is the accelerated rate of human-mediated spread, distances traversed and numbers 

of species involved that set current biological invasions apart from natural long-distance 

colonisations and range expansions (Cassey et al., 2005). Consequently, many landscapes and 

seascapes in various parts of the world are now dominated by alien species (Cassey et al., 

2005; Didham et al., 2005). Coastal ecosystems, inland waters, islands and Mediterranean-

climate regions are most threatened by biological invasions (Pyšek & Richardson, 2010). This 

thesis will focus on biological invasions in the Mediterranean-climate region of the Western 

Cape Province, South Africa, and more specifically on the ecological impacts of terrestrial 

biological invasions. 

The impacts of alien species on native biota are of particular concern, and have received 

a great deal of attention from researchers (Richardson, 2006). An impact may be defined as ‘the 

description or quantification of how an alien species affects other organisms and the 

environment’ (Pyšek & Richardson, 2010). Invasive alien species can displace native species, 

reduce their abundance, rapidly disassemble communities, alter community organisation and 

disrupt ecosystems (Vitousek et al., 1996; Mack et al., 2000; O’Dowd et al., 2003; Sanders et 

al., 2003; Blackburn et al., 2004; Gaertner et al., 2009). Impacts of the vast majority of alien 

species have not been quantified (Parker et al., 1999), although most are assumed to have 

some ecological impact on the invaded ecosystem (Ricciardi & Kipp, 2008). Most such impacts 

are observed at the population or community level, but some invasive alien species also cause 
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impacts at an ecosystem level (Parker et al., 1999; Pyšek & Richardson, 2010), where they 

disrupt major trophic networks and other ecological processes. The focus of this thesis is on 

population and community level ecological impacts on terrestrial invertebrates, resulting from 

pine invasions. 

 

Ecological impacts of pine invasions in South Africa 

 

South Africa is well advanced in the field of biological invasion, certainly in comparison with the 

rest of Africa, because it has robust national legislation for tackling the biological invasion 

problem, and a relatively well-developed research information infrastructure (McGeoch et al., 

2010). South Africa accounts for roughly two-thirds of all published research on biological 

invasions produced on the African continent (Pyšek et al., 2008). The country has a long history 

of research on plant invasions (reviewed in Chown, 2010), and is a global leader in the 

application of pine invasion research (Richardson, 2006). Unfortunately, South Africa also has 

one of the highest levels of alien plant invasion, compared to other countries (Richardson & van 

Wilgen, 2004). 

Invasive alien trees have major impacts on native species richness. Pines (Pinus 

species) and Australian wattles (Acacia species) are among the alien invasive plants that cause 

the most significant declines in native species richness in South Africa (Richardson & van 

Wilgen, 2004; Gaertner et al., 2009). These species are particularly problematic in fynbos, the 

Mediterranean-climate shrubland concentrated mostly in the Western Cape Province. Here 

dense stands of pines and wattles are known to reduce native plant diversity and abundance at 

small spatial scales (Richardson et al., 1989). The Fynbos Biome is the most heavily invaded 

and best-studied of South Africa’s eight terrestrial biomes (Richardson & van Wilgen, 2004), and 

also that which supports the highest proportion of endemic plant species. Given the severe 

impacts of pine invasions, especially in fynbos, this thesis is set in the Fynbos and Forest 

Biomes, South Africa’s smallest and most heavily invaded biomes (Henderson, 1998). At least 

21 Pinus species have become invasive, with severe impacts in South Africa and other 

Southern Hemisphere countries (Richardson et al., 1994; Richardson, 2006). Pines represent a 

model taxon for studies on alien plant invasions, and many of the important insights gained from 

pine invasion studies are also relevant for other plant taxa (Richardson, 2006). 

Most invasive pine species in South Africa are also commercially important forestry 

species (Richardson, 2006). Over 80 species of Pinus have been introduced to South Africa, 

seven of which now form the backbone of commercial forestry industries in the Southern 
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Hemisphere (reviewed in Richardson et al., 1994). Pine plantations (the main focus of this 

study) are regularly spaced monocultures (Hartley, 2002). Although plantations are sometimes 

referred to as ‘plantation forests’ or ‘pine forests’, to avoid confusion the term “forest” is used 

here to refer only to native (indigenous) forest, and not also to planted or invasive stands of pine 

trees. Afforestation, the planting of large numbers of trees on previously non-forested land, is 

equivalent to a dense invasion. Therefore, studies of the effects of plantation forestry offer 

insights into the impacts of invasive alien trees. Afforestation has striking impacts on biodiversity 

in certain parts of South Africa, and has resulted in numerous plant and animal species 

becoming threatened, or being forced to local extinction (Armstrong et al., 1998). 

 

Ecological impacts of invertebrate invasions in South Africa 

 

Biological invasions by alien animals in South Africa have received far less attention than those 

by alien plants (Chown, 2010). The most comprehensive current list for South Africa cites 601 

alien animal species (Picker & Griffiths, 2011), but is most certainly an underestimate, especially 

for invertebrates. Despite the large number of alien animal species (spanning most major 

taxonomic groups) in South Africa (Macdonald et al., 2003; Musil & Macdonald, 2007), few have 

been well-studied. Consequently, most insights on the mechanisms and impacts of invasion 

come from studies of a few of the most harmful invasive alien species (Pyšek et al., 2008). 

Locally, the Argentine ant (Linepithema humile) has received more attention than most 

other alien invertebrate species, because its invasion into fynbos has caused the disruption and 

collapse of an ant-plant mutualism, namely myrmecochory, which involves the dispersal of 

seeds by ants (Bond & Slingsby, 1984). Argentine ants have also been reported to reduce ant 

species richness and to replace dominant native ants, in particular, ground-foraging, seed-

dispersing ant guilds in fynbos (Bond & Slingsby, 1984; Parker-Allie et al., 2008). 

The Argentine ant and four other invasive ant species are listed among the 100 of the 

world’s worst invasive species, chosen for their serious impact on biodiversity and/or human 

activities, and their illustration of important issues surrounding biological invasion (Lowe et al., 

2000). Invasive ants are a globally pervasive ecological problem due to their expanding 

geographic ranges, high propagule pressure, high local abundances and ability to disrupt 

ecosystems (Holway et al., 2002). High competitive ability, polygyny, dependent colony 

foundation and unicoloniality characterise these successful invasive ant species (Suarez et al., 

2010). Throughout the world, invasive ants also readily spread from human-modified habitats 

into undisturbed natural areas, under suitable abiotic conditions (reviewed in Krushelnycky et 
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al., 2010). Therefore, Argentine ants, like pine plantations, are a focus of this thesis, given the 

conservation concern associated with their invasion, both locally and globally. 

Non-ant alien invertebrates may also impact native invertebrate diversity, either directly 

through predation and parasitism, or indirectly by disease transmission, disrupting mutualisms 

and through interference competition (Kenis et al., 2009). Therefore, in addition to the impacts 

of Argentine ants, the ecological impacts of other alien invertebrates (particularly Mollusca) are 

investigated. This is one of the first attempts to inventory and quantify ecological impacts of non-

ant terrestrial alien invertebrates on the Cape Peninsula, in the Western Cape Province. 

 

Implications of felling pine for invertebrate communities 

 

It is not enough to know the ecological impacts of planted or invasive stands of pine, or which 

invertebrate species survive under pine plantations. There is also an urgent need to start 

documenting and understanding the community compositional changes that take place post-

felling of pine, in order to inform responsible and appropriate management decisions. Clearing 

invasive alien trees has tangible conservation benefits. For example, three species of endemic 

South African dragonflies that were feared extinct, are now known from sites from which 

invasive alien trees have subsequently been removed (Samways et al., 2005; Samways & 

Sharratt, 2009). However, little is known about the recovery of invertebrate communities after 

clear-felling of pine. This study is one of the first attempts to fill this gap, and to identify 

potentially suitable invertebrate taxa to use as ecological indicators of restoration progress in 

fynbos following clear-felling of pine. 

 

Broad aims and objectives 

 

This study was undertaken on the Cape Peninsula in Table Mountain National Park (Cape 

Town), a World Heritage Site and global biodiversity hotspot in the Cape Floristic Region. Alien 

pine plantations on the Cape Peninsula replaced fynbos, but are thought to support lower 

invertebrate species richness and different community assemblages, compared to neighbouring 

native forest (e.g. Ratsirarson et al., 2002; Raharinjanahary, 2007; Stephens & Wagner, 2007; 

Pryke & Samways, 2009b). The primary overall aim of this study is to assess the implications of 

planting and felling pine for ground-dwelling invertebrates. The secondary overall aim is to 

profile and investigate the impacts of all ground-dwelling alien invertebrate species, since this 

has not previously been attempted on the Cape Peninsula. This study is a conservation priority, 
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because the Cape Pensinsula supports exceptional invertebrate endemism, and many of these 

species are ground-dwelling (Picker & Samways, 1996). In doing so, this study frames invasion 

ecology theory in a regional conservation context, but the findings also have application to other 

Mediterranean-type ecosystems impacted by invasive alien pines. The impacts of alien 

plantations and alien invertebrates are a globally relevant conservation concern, given that 

invasive alien species are considered the second biggest threat to global biodiversity (Wilcove 

et al., 1998; Simberloff, 2001). 

 

The broad objectives of this study are: 

1) To determine the influence of exotic pine plantations on ground-dwelling invertebrate 

species richness and community composition (Chapter 3). 

2) To investigate the impacts of Argentine ants on native ants and other ground-dwelling 

invertebrates, and to investigate the impacts of other (non-ant) alien invertebrate species 

on their corresponding native taxa (Chapter 4). 

3) To identify and test potentially suitable ground-dwelling invertebrate taxa for use as 

ecological indicators of restoration progress in fynbos following clear-felling of pine 

plantations (Chapter 5). 

4) To integrate the findings of this study, discuss their implications for invertebrate 

conservation and management, and propose future research (Chapter 6). 
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CHAPTER 2. STUDY SITES AND SAMPLING METHODS 

 
Study area 

 

Cape Peninsula 

This study took place in Table Mountain National Park, which stretches from Signal Hill 

(33o55’4”S 18o24’10”E) to Cape Point (34o21’26”S 18o29’51”E) on the Cape Peninsula (area: 

471 km2), in the south-western tip of the Cape Floristic Region, and surrounded by one of South 

Africa’s fastest growing metropolises, greater Cape Town. The Cape Peninsula forms part of the 

Cape Fold Mountains, and is renowned for its topographical heterogeneity (Cowling et al., 1996) 

and exceptional biological diversity and endemism, with 158 endemic angiosperms (Helme & 

Trinder-Smith, 2006) and at least 111 endemic invertebrates (Picker & Samways, 1996) known 

to be restricted to the Peninsula. Serious threats to Cape Peninsula biodiversity include land 

transformations, alien tree invasions and altered fire regimes (Richardson et al., 1996). 

 

The Fynbos Biome, with a focus on Sandstone Fynbos and Granite Fynbos 

The Fynbos Biome is one of five geographically distinct areas that together constitute the global 

Mediterranean Biome, the others being the Mediterranean Basin, Californian Floristic Province, 

a small region in North Chile and two separate regions in Australia (Rebelo et al., 2006). The 

Fynbos Biome is subdivided into three main vegetation units: fynbos, renosterveld and 

strandveld. The fynbos alone boasts some 7500 of the almost 9000 plant species found in the 

Cape Floristic Region, over 80% of which are endemic to the region (van Wyk & Smith, 2001). 

Fynbos is characterised by nutrient-poor soils; hot, dry summers and cool, wet winters; 

recurrent fires at 5-50 year intervals; and complex plant-animal interactions, especially 

pollination and dispersal (Rebelo et al., 2006). Fynbos is both fire-prone and fire-dependent, 

with summer and early autumn fires necessary to maintain diversity and ecosystem processes 

(Forsyth & Bridgett, 2004). The current fynbos vegetation classification follows the underlying 

geology (Rebelo et al., 2006). Two of the fynbos vegetation groups found on the Cape 

Peninsula, namely Sandstone Fynbos and Granite Fynbos, were included in the experimental 

design of this study. 

Sandstone Fynbos is the most extensive vegetation group within the Fynbos Biome, 

covering roughly one third (301 km2) of the biome on the Cape Peninsula. Peninsula Sandstone 

Fynbos (Rebelo et al., 2006) was previously classified (among other names) as Mountain 

Fynbos (Low & Rebelo, 1996). It occurs on gentle to steep slopes (up to 1086 m a.s.l.) across 
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the 50 km length of the Cape Peninsula, on stony, often very sandy, acid lithosol soils derived 

from Ordovician sandstone of the Table Mountain Group, a subdivision within the Cape 

Supergroup rocks. Mean Annual Precipitation (MAP) ranges from 520-1690 mm, peaking from 

May to August. Vegetation comprises mainly proteoid, ericaceous and restioid fynbos, with 

some asteraceous fynbos. Comparatively little land transformation has taken place in the 

mountain habitat, affording Sandstone Fynbos the conservation status of ‘Least Threatened’. 

Nevertheless, urban sprawl and alien plantations have transformed large parts of this vegetation 

group, and dense patches of woody invasives occur, despite a long history of conservation in 

the mountains. 

Granite Fynbos covers only 2% of the Fynbos Biome. Peninsula Granite Fynbos (Rebelo 

et al., 2006) is found on gentle to steep lower slopes (up to 450 m a.s.l.), below the sandstone 

mountain slopes on the Cape Peninsula, almost entirely surrounding Table Mountain. Soils are 

deep loamy, sandy soils, derived from the Cape Granite Suite. Mean Annual Precipitation 

ranges from 590-1320 mm, peaking from May to August. This diverse vegetation group is 

dominated by asteraceous and proteoid fynbos. Peninsula Granite Fynbos is listed as 

‘Endangered’. Although it is conserved in Table Mountain National Park and Kirstenbosch 

National Botanical Garden, much of this fynbos is senescent and undergoing transformation into 

Afrotemperate forest, as a result of the fire-exclusion policies in Orange Kloof and Kirstenbosch, 

and a reluctance to use fire on green belts and on the urban fringe. 

 

The Forest Biome, with a focus on Southern Afrotemperate Forest 

Forest covers 32% of dry land globally, of which 17% is found on the African continent (Dajoz, 

2000). Forest is the smallest biome in southern Africa (Rutherford & Westfall, 1994; Eeley et al., 

2001), covering less than 1% of the combined land area of South Africa, Lesotho and Swaziland 

(Midgley et al., 1997; Rutherford, 1997; Rouget et al., 2004; Berliner, 2005). In southern Africa, 

there are over 20 000 patches of forest, ranging in size from less than 1 ha to over 2000 ha, but 

71% of the patches are less than 10 ha (Berliner, 2005). Forest patches have a naturally 

fragmented distribution, scattered along the eastern and southern mountain ranges and coastal 

lowlands of southern Africa. This ‘forest archipelago’ is embedded in a matrix of temperate 

biomes, including fynbos, grassland, succulent thicket and savanna (Mucina & Geldenhuys, 

2006). 

Despite their small size and fragmented distribution, South African forests are globally 

significant in terms of biodiversity. A comparison of the plant species richness relative to the 

total area of each biome in South Africa shows that the forest biome contains the highest 
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density of plant species: 3000 species in approximately 5052 km2, compared to the next 

highest, fynbos, with 7500 species in 76 744 km2 (Berliner, 2005). Southern African temperate 

forests are also between three and seven times richer in tree species than other forested 

regions of the Southern Hemisphere, with the richness of South African tree genera and families 

being unparalleled (Cowling, 2002). 

Afrotemperate forests in southern Africa form part of the global warm-temperate Forest 

Biome (Rutherford et al., 2006). Afrotemperate forests were previously known locally as 

Afromontane forests (sensu White, 1978). They share affinities with the Afromontane Region 

throughout sub-Saharan Africa, which occurs as a series of isolated patches constituting the 

Afromontane regional centre of endemism (White, 1983). Although most Afromontane 

communities in the tropics occur above 2000 m, forest occurs almost at sea level on the moist, 

sheltered, eastern slopes of Table Mountain, where latitude “compensates” for altitude and the 

climate is influenced by the proximity to the Atlantic Ocean (Meadows & Linder, 1989). 

Based on a biogeographic-floristic classification of South African indigenous forests (von 

Maltitz et al., 2003), 26 forest types are currently recognised (Mucina & Geldenhuys, 2006). The 

Southern Afrotemperate Forest Group consists of three vegetation types: Southern Cape 

Afrotemperate Forest, Western Cape Talus Forest and Western Cape Afrotemperate Forest 

(Mucina & Geldenhuys, 2006). This study focuses on Western Cape Afrotemperate Forest, 

which occurs on the Cape Peninsula. Forest patches occur in deep ravines on all sides of Table 

Mountain, and in steep, sheltered cliffs on the plateau, but only extend onto open slopes on the 

moist, sheltered eastern side (Adamson, 1927). 

Southern Afrotemperate Forest currently has the conservation status of ‘Least 

Threatened’ (Rouget et al., 2004), because over half of the extant patches have statutory 

conservation in national parks (including Table Mountain National Park) and nature reserves 

(Mucina & Geldenhuys, 2006). However, this classification represents forest only at the level of 

forest groups, not types, thereby not accounting for differences in conservation status among 

forest types. Western Cape Afrotemperate Forest is one of the rarest forest types in South 

Africa, covering only 4731 ha (Berliner & Benn, 2003; Berliner, 2005). It has historically been 

heavily exploited, although in the absence of detailed scientific documentation it is impossible to 

know the precise extent of forest in the past, before human exploitation (McKenzie et al., 1977). 

Consequently, Berliner (2005) recommended that the IUCN endangerment category for 

Western Cape Afrotemperate Forest should be ‘Vulnerable’. Berliner (2005) argued that, since 

no reliable scientific data are available to assess the levels of historic habitat loss for forest 
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types, habitat loss (transformation) should not be used as the main criterion for assessing the 

ecosystem status of forests in South Africa. 

 

Fynbos or forest on the Cape Peninsula? 

Bioclimatically, most fynbos occurs in areas mesic enough to support Afrotemperate forest. 

Bond et al. (2003), using a simulation study, argue that current levels of CO2 (360 ppm) are 

potentially suitable for mesic fynbos to develop towards fire-sensitive forest, if fires were 

excluded. This is evident on the Cape Peninsula, in areas such as Kirstenbosch and Orange 

Kloof, where changes in fire management have allowed forest to colonise areas naturally 

covered with Granite Fynbos only a few decades ago (McKenzie et al., 1977; Rebelo et al., 

2006). Succession to forest may be possible in areas of high rainfall, especially in old, moribund 

fynbos vegetation, where shading facilitates the establishment of forest species (Manders, 

1990). However, under more natural conditions, fynbos maintains dominance in the landscape 

through regular natural burning, since fire excludes forest species (Rebelo et al., 2006 and 

references therein). Consequently, ‘true’ evergreen Afrotemperate forest is naturally confined to 

large screes, deep kloofs and fire refugia protected by cliffs and scarps. Fire is also responsible 

for the sharp (often only a few metres) ecotone between fynbos and forest (Rebelo et al., 2006). 

Nutrient availability also differs greatly between fynbos and forest. In fynbos, nutrient 

cycling is slow and fire acts as a mineralising agent, whereas in forest, nutrients are recycled in 

the litter layer (Stock & Allsopp, 1992; Rebelo et al., 2006). The response of fynbos vegetation 

to low nutrient availability adds to its uniqueness and biological importance. This vegetation 

response includes serotiny, myrmecochory, obligate reseeding versus resprouting, lack of 

annuals, sclerophylly, lack of mycorrhiza and presence of cluster roots, carnivory and digestive 

mutualisms, low biomass of herbivores, and bird and mammal pollination (Rebelo et al., 2006). 

Many of these are absent in the Afrotemperate forest flora. Afrotemperate forest differs 

physiognomically and floristically from fire-prone fynbos shrublands, because it contains 

medium to tall, closed-canopy, broad-leaved, evergreen trees and shrubs with strong Afro-

tropical affinities, with most forest species widespread outside of the Cape Floristic Region 

(Cowling et al., 1996). Southern Afrotemperate Forest accounts for less than 5% of the plant 

species on the Cape Peninsula, with about half of the 150 plant species that are over 1.5 m tall 

occurring in fynbos (T. Rebelo pers. comm., 2008). 

 

Pine plantation history on the Cape Peninsula 
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Large-scale planting of pine and other fast-growing alien trees, such as eucalypt and acacia, in 

the Western Cape began in the 1850s. However, it was not until the 1880s that pine plantations 

were established on the slopes of Table Mountain and the Cape Peninsula (Cowling et al., 

1996; Richardson & Higgins, 1998). Commercial plantations were established in the fynbos 

surrounding forest patches, but rarely in areas cleared of evergreen forest (Mucina & 

Geldenhuys, 2006). Pine plantations on the eastern slopes are in Granite Fynbos, because 

Sandstone Fynbos productivity proved too low to sustain commercial plantations on the Cape 

Peninsula (T. Rebelo pers. comm., 2010). 

Two species of pine (Family Pinaceae) have been widely planted for commercial timber 

production in the Western Cape. Pinus pinaster Ait. (Cluster pine) is native to Mediterranean 

areas of Europe (Henderson, 2001). It was introduced to South Africa in 1680 (Richardson et 

al., 1992), soon after colonization of the Cape by the Dutch, and by 1772 was widespread on 

the Cape Peninsula (Richardson & Higgins, 1998). Cluster pine is now by far the most 

widespread invasive pine species in South Africa (Richardson et al., 1994). It is also one of 15 

woody plant species listed among the 100 of the world’s worst invasive species (Lowe et al., 

2000). P. radiata D. Don (Monterey pine or Radiata pine) is native to California in North America 

(Henderson, 2001). It was first recorded in the Western Cape in 1865 (Richardson & Higgins, 

1998), where it quickly became the most commonly planted timber species (Lavery & Mead, 

1998). Today, Monterey pine is the dominant exotic softwood used in plantations for commercial 

timber production in South Africa (Simberloff et al., 2010), Australia (Sinclair & New, 2004) and 

New Zealand (Pawson et al., 2008). Consequently, Monterey pine is the most widely planted 

alien conifer in the world, occupying over three million hectares of plantations outside of its 

natural range (Richardson et al., 1994). 

Both P. pinaster and P. radiata are successful alien invasives in Australia, New Zealand, 

Chile and South Africa (Richardson et al., 1994), especially in fynbos (Richardson & Higgins, 

1998). Both species are also declared invaders (category 2: commercially used plants) in South 

Africa (Henderson, 2001). Pines and other alien plants have been recognised as invasive 

species in fynbos since the 1920s (Rebelo et al., 2006). P. radiata is also known to invade forest 

gaps (Henderson, 2001), but severe disturbance is needed to assist seedling recruitment in 

native forest, since by virtue of their structure, forests resist invasion (Richardson et al., 1994). 

Consequently, Afrotemperate forest is less vulnerable to invasion by pine than fynbos, even 

when forest patches are adjacent to pine stands (Richardson et al., 1994). 

Although facilitated by their long planting history, the life history strategies of these two 

pine species have largely determined their invasion success. Their good dispersal ability (small 
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seeds, low seed-wing loading and long distance wind dispersal) facilitates invasion (Richardson 

et al., 1990). In addition, their superior fire-resilience, compared with indigenous species, 

enables pines to persist and disrupt the natural non-equilibrium system (Richardson et al., 

1990). Fire-resilience is achieved by a combination of rapid growth to maturity and accumulation 

of large seed reserves in the canopy (Richardson & Cowling, 1992). Pines have a tendency to 

form dense thickets, and often out-compete fynbos shrubs in areas recovering from fire 

(Richardson et al., 1994). Most pine seedlings establish in the first two years after fire in fynbos, 

when native plant cover is low (Richardson & Cowling, 1992). 

Increasing alien plant invasions pose the greatest threat to biodiversity on the Cape 

Peninsula (Richardson et al., 1996). The invasive spread of alien woody species from 

commercial plantations into adjacent native vegetation threatens areas set aside for 

conservation (Armstrong et al., 1998), such as Table Mountain National Park. This has 

important management implications, where biodiversity conservation is a primary objective. 

Local extinction of many fynbos plant species has been reported following pine invasion 

(Richardson & van Wilgen, 1986; Richardson et al., 1989). Most fynbos species are unable to 

withstand shading under pine, although some native geophytes, including Ornithogalum and 

Moraea, do persist (Adamson, 1927). This has implications for native plant and animal 

distributions, and for the rehabilitation of clear-felled pine areas. Pine plantations at Cecilia and 

Tokai plantations on the Cape Peninsula are currently being clear-fell harvested over a 20-year 

period, ending in 2025, with the intention of restoring the land to fynbos. 

 

Study sites 

 

Thirty-two sites were selected at eight localities across the eastern slopes of Table Mountain 

National Park, which lies within the northern section of the Cape Peninsula (Fig. 2.1, Appendix 

A). These sites were located, from north to south, in Newlands Forest, Kirstenbosch National 

Botanical Garden, Cecilia Plantation, Orange Kloof Forest Station and Tokai Plantation, with 

roughly 12 km between the northern- and southern-most sites. The eight clusters, each 

consisting of four sites, were selected to replicate each of the four ‘vegetation types’ or habitats: 

(1) Western Cape Afrotemperate Forest, (2) Peninsula Sandstone Fynbos or Peninsula Granite 

Fynbos, (3) commercial pine plantation (Pinus pinaster or P. radiata) and (4) recently clear-

felled pine plantation. The ‘ideal’ scenario of forest, fynbos, pine plantation and clear-felled pine 

sites together in one area was only possible at Rooikat and Spilhaus Ravines in Cecilia 

Plantation, and Tokai N (Boekenhoutkloof) and Tokai S (Prinskasteel) in Tokai Plantation. The 
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remaining four areas had two sites of the same habitat to make up a total of eight replicates per 

habitat. Where two sites of the same habitat were sampled in an area, these sites were not 

contiguous, to avoid pseudoreplication. Sites were a priori selected based on vegetation and not 

on the presence-absence of alien invertebrate species. 

 

Tokai S

Tokai N

Newlands

Kirstenbosch

Rooikat
Spilhaus

Constantia Nek
Orange Kloof

 

 

Figure 2.1. Location of 32 study sites in Table Mountain National Park (right) on the Cape 

Peninsula, South Africa. Map of South Africa (top left) shows the Fynbos Biome (in grey). Cape 

Peninsula (bottom left) shows the distribution of native vegetation sampled: Peninsula 

Sandstone Fynbos (light grey), Peninsula Granite Fynbos (dark grey) and Western Cape 

Afrotemperate Forest (black). See Appendix A for site information. 
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Pilot study 

 

A pilot study was conducted at Cecilia in mid May 2008 (late autumn, after the first winter rains). 

The aim was to determine the minimum number of replicates for each collecting method (i.e. 

sampling intensity) needed to adequately represent the ground-dwelling invertebrate 

community, within reason of practical limitations. One site each in contiguous Afrotemperate 

forest (Site 9, Rooikat Ravine), Sandstone Fynbos (Site 10) and pine plantation (Site 11) was 

sampled for ground-dwelling invertebrates (see Appendix A for site details). At each site, five 

leaf litter samples, 10 soil samples, 10 pitfall traps, 10 sugar-baited ant traps and one decayed 

log sample were collected (see full-scale study sampling methods below for details). 

To justify the use of both unbaited (antifreeze) and sugar-baited pitfall traps, the total 

number of ants collected in each habitat was compared (Table 2.1). Number of individuals was 

consistently higher in sugar-baited traps across habitats, suggesting that ants may be attracted 

by the sweet scent of a carbohydrate source (sugar solution), even if most individuals cannot 

return to the colony to recruit more nestmates to the sugar solution. Greenslade & Greenslade 

(1971) also report much higher catches of ants in syrup (sugar in water) baited traps (800 

individuals) compared to control (alcohol-glycerol) traps (four individuals). 

 

Table 2.1. Total number of ant individuals collected in 10 pitfall traps versus 10 sugar-baited ant 

traps in each habitat during the pilot study, with the number of species collected in parentheses. 

 

Habitat All ants Argentine ants only 

 Pitfalls Baited ant traps Pitfalls Baited ant traps 
Forest 32 (8) 1241 (8) 0 7 
Fynbos 149 (10) 1938 (15) 15 1399 
Pine 93 (5) 2078 (8) 18 1764 

 

Sample-based randomized species-accumulation curves (Gotelli & Colwell, 2001) were 

plotted using Sobs Mao Tau, calculated in EstimateS version 8 (Colwell, 2006), to test sampling 

saturation. Sampling intensity was fairly low and as a result sampling saturation was not fully 

achieved for all species combined (Fig. 2.2), higher invertebrate taxa (Fig. 2.3), or sampling 

methods (Fig. 2.4). However, it should be appreciated that sampling saturation is seldom 

achieved for multi-taxa terrestrial invertebrate surveys, even following intensive sampling 
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(Gotelli & Colwell, 2001), and sampling intensity is therefore a trade-off against logistical, time 

and cost constraints. Most of the Afrotemperate forest patches on the Cape Peninsula are 

small and dominated by edge effects, so that the core habitat area available and accessible for 

sampling prohibited increasing the number of replicate samples collected. 
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Figure 2.2. Species-accumulation curves of all species and pilot study collecting methods 

combined. Curves were calculated in EstimateS using Sobs (Mao Tau) and the classic formula 

for Chao 1 and Chao 2, randomized 50 times. 
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Figure 2.3. Species-accumulation curves for pilot study invertebrate higher taxa: (a) Arachnida, 

(b) Crustacea, (c) Insecta, (d) Mollusca, (e) Myriapoda and (f) Oligochaeta. 
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Figure 2.4. Species-accumulation curves for all pilot study invertebrate species for (a) leaf litter 

samples, (b) soil samples, (c) pitfall traps and (d) sugar-baited ant traps. Log samples omitted, 

because only one log per site was sampled. 

 

The pilot study assisted in (a) gaining insight on the number and groups of invertebrates 

to be collected and (b) refining the proposed collecting methods and sampling intensity (number 

of replicates per site). Besides doubling the number of leaf litter (from five to ten) and decayed 

log (from one to two) replicates per site, the same protocols from the pilot study were used in 

the full-scale study. This decision was based on the practical constraints of carrying additional 

equipment (especially traps and liquid) up the mountain, and the extra time required both in the 

field and for subequently processing and identifying samples in the laboratory. 

Although the pilot study took place at a different time of year to the full-scale sampling, 

this was not expected to have a pronounced impact on the reliability of interpretation of findings. 

Seasonal effects on invertebrate communities in southern Africa are less pronounced than in 

more temperate regions of the world, especially when compared to the Northern Hemisphere. 

Furthermore, ground-dwelling invertebrates (earthworms, centipedes, millipedes, molluscs and 



C. Uys, PhD (February 2012). Chapter 2. Methods 

23 
 

ants) in Afrotemperate forest in the Drakensberg mountains show seasonal stability, with the 

invertebrate community sampled in winter a subset of the summer community (Uys et al., 2010). 

 

Sampling methods 

 

Full-scale study sampling methods 

Sites were selected in the approximate centre of a patch of vegetation, depending on 

accessibility. At each of the 32 sites (except Site 11), a range of sampling methods, both active 

and passive, was employed to sample ground-dwelling invertebrates. These methods included 

leaf litter samples, soil samples, pitfall traps, sugar-baited ant traps and decayed logs. The 

focus of this study is on epigaeic invertebrates, because of their high levels of endemism on the 

Cape Peninsula, their vulnerability to disturbance and habitat loss, and their appropriateness to 

answering questions posed by this thesis. While the sampling methods chosen primarily 

targeted epigaeic invertebrates, hypogaeic taxa were collected in soil samples. Sampling did not 

target flying insects, but incidental catches of foliage-dwelling and aerial taxa that did occur 

were not excluded from analyses. 

Twenty-five days were spent in the field, sampling between 08h00 and 14h00 (i.e. 150 

sampling hours). The order in which the eight clusters of sites were sampled was randomly 

chosen and different in 2008 and 2009, to avoid possible unwanted spatial autocorrelation 

(Legendre, 1993) between the north-south alignment of sites and the date of sampling. Leaf 

litter and soil sampling took place from mid September to late November 2008 (i.e. spring to 

early summer). Pitfall trap, sugar-baited ant trap and decayed log sampling took place from 

early January to late February 2009 (i.e. late summer, dry season). Sampling took place at 

different times of year for two reasons. Firstly, for the practical limitations of processing samples 

and secondly, to maximise the community sampled, since many litter taxa are most abundant at 

the end of the rainy season, yet ants are most active and abundant during summer. The entire 

block of pine plantation at Site 11 (Rooikat, Cecilia) was unexpectedly felled in January 2009, 

ahead of the forestry company’s proposed felling schedule, so no pitfall traps, ant traps, or 

decayed logs were sampled there, and this site was omitted from subsequent analyses. 

Ten leaf litter samples per site were collected to sample leaf litter invertebrates, by filling 

a 2 l container with leaf litter every 5 m along a transect. Ten soil samples per site were 

collected to sample soil invertebrates. One 500 ml soil sample was taken every 5 m along a 

transect, by clearing away surface vegetation and litter, digging a hole with a small trowel, and 

removing soil up to 150 mm depth. Litter and soil samples were stored in sealed plastic bags 
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and kept cool (in a constant environment room set at 10oC) to minimize decomposition and 

invertebrate mortality, and to immobilize predaceous animals, until samples were sorted. All 

samples were sorted within two weeks, and mostly within a few days, of collection. Samples 

were sorted in a random order to avoid any habitat-bias in time spent in cool-storage, which 

could lead to variance in the results obtained. Given the potential limitations of this cool-storage 

delay prior to sampling, litter and soil samples were sorted meticulously by hand. Hand-sorting 

was chosen instead of using winkler bags, Burlese funnels or some other extraction method that 

relies on the assumption that all invertebrates present in the sample are alive and able to move 

away from a light/heat source, and in doing so fall into a collecting jar. During hand-sorting, all 

vegetation (for leaf litter samples) or soil (for soil samples), and the inside of each bag, were 

thoroughly and meticulously inspected with the aid of a desk lamp for illumination and to warm 

up the animals. All invertebrates larger than 0.5 mm were removed and preserved. Mortality 

was very low, even for small, soft-bodied taxa, such as springtails. 

Ten pitfall and 10 ant traps per site were left in the field for seven days to collect ground-

dwelling invertebrates not easily sampled using other methods. Pitfall traps were 450 ml round, 

clear plastic tubs (85 mm deep and 100 mm diameter opening), half filled with 50% ethylene 

glycol (antifreeze) and placed at 5 m intervals along a transect. Every second tub was covered 

with an inverted plastic flower pot drip tray (160 mm diameter), raised 100 mm above ground 

level on a wire frame, to reduce evaporation, prevent rain from flooding the traps and limit the 

quantity of leaves and twigs that fell into the tub. Only half the traps were covered due to the 

logistic constraints of carrying equipment up the mountain. Sugar-baited ant traps were set to 

specifically target ants that are attracted to a carbohydrate source. Ant traps used the same 

plastic tubs and covers as pitfall traps, and were left in the field for the same seven days. Ant 

trap tubs were placed at 5 m intervals along a transect that ran parallel to, but 5 m from, the 

pitfall traps. Tubs were half filled with a 20% sucrose solution. All invertebrates collected in the 

pitfall and ant traps were thoroughly rinsed in tap water before preservation. 

Two decayed logs of approximately 1.5 m length and 0.2 m diameter, in an advanced 

state of decay, were selected at each site to sample saproxylic invertebrates. Each log was 

transferred to a large, white, plastic sheet, and sorted in the field by systematically breaking 

apart the entire log, removing and preserving all invertebrates (1 mm and larger) visible to the 

naked eye. Sampling was restricted to mornings, because the eastern slopes of the mountain 

are in shadow by mid-afternoon. Logs were carefully moved on the plastic sheet to a clearing or 

path nearby for maximum light and ease of sampling. Only two logs per site were sampled, both 
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because of time constraints (logs had to be sorted on site) and because of the low number of 

suitably decayed logs (especially in fynbos) available. 

 

Environmental variables 

Basic environmental variables were recorded at all 32 sites. GPS coordinates were recorded in 

the field using a hand-held Garmin GPS and checked against Google Earth 5.0. Altitude 

(elevation) recorded in the field proved unreliable, so mean altitude was taken from the 1:20 000 

Table Mountain hiking map (Slingsby, 2007). The habitat at each site (1000 m2) was visually 

scored according to canopy cover (%), ground cover (%), leaf litter (%), rocks (%) and shrubs 

less than 1 m (%) and summarised for each vegetation type (Table 2.2). 

 

Table 2.2. Descriptive statistics for visually scored percentage cover in each habitat. 

 

 Habitat 
Canopy cover 

(%) 
Groundcover 

(%) 
Leaf litter 

(%) 
Rocks 

(%) 
Shrubs 

(%) 

Mean ± SD      

 Forest 80.00 ± 13.09 46.25 ± 26.69 83.75 ± 11.88 50.63 ± 27.57 37.50 ± 19.09 

 Fynbos 23.75 ± 24.46 62.50 ± 44.32 62.50 ± 23.75 17.50 ± 16.69 63.75 ± 31.59 

 Pine 70.00 ± 17.32 27.14 ± 22.89 95.71 ± 7.87 22.14 ± 15.77 22.86 ± 17.99 

 Felled 0 50.63 ± 41.27 43.75 ± 33.78 16.88 ± 10.67 4.38 ± 4.96 

Range      

 Forest 60 - 100 10 - 80 70 - 100 5 - 80 0 - 60 

 Fynbos 0 - 70 0 - 100 20 - 90 0 - 40 40 - 100 

 Pine 50 - 90 0 - 50 80 - 100 0 - 50 0 - 50 

 Felled 0  5 - 100 10 - 100 5 - 30 0 - 10 
 

Soil pH, moisture and organic content were measured in the laboratory. Soil samples 

were weighed in their sealed bags within 24 hours of collection, using a 600 g balance, to 

determine “wet weight”. Soil pH was measured by mixing 12.5 ml of soil in 12.5 ml distilled 

water, shaking the mixture for 30 seconds, allowing it to settle for five minutes, and measuring 

the pH of the supernatant liquid with a hand-held Crison pH meter. Mean soil pH was calculated 

for five randomly chosen soil samples per site. 

After removing all invertebrates from each sample, all soil was returned to the plastic 

bag and re-weighed to account for any loss (typically up to 10 g loss, largely due to removal for 

pH measurement). This new weight was used as the wet soil weight. Open plastic soil bags 
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were dried in an oven at 60oC for at least 36 h. Dry soil was weighed to determine weight loss 

due to moisture content of the soil. Soil moisture was calculated as: 

Soil moisture = (wet weight - dry weight) / (wet weight) 

Soil samples were large (greater than the standard 40 g samples) and not dried at over 105oC. 

This is acknowledged as a limitation of this study and may have affected soil moisture 

comparisons, especially for sites with high clay content in the soil, which would have lost their 

pore water, but not their adsorbed water. 

Soil organic content was measured by further drying soil samples in a muffle furnace at 

400oC for 4 h, to burn off all organic content (including roots, twigs and leaves) in the soil. Soil 

was then cooled to room temperature and weighed. Soil organic content was calculated as: 

Soil organic content = (dry weight - muffle dried weight) / (dry weight) 

Despite the high range of values (Table 2.3), one-way analysis of variance (ANOVA) showed 

significant differences between habitats for soil pH (F = 36.654, df = 3, p < 0.001) and soil 

moisture (F = 19.062, df = 3, p < 0.001). Due to technical failure of the muffle furnace, soil 

organic content was only calculated for Sites 1 to 11. No significant difference (F = 0.471, df = 2, 

p = 0.641) in soil organic content was found between forest (n = 4 sites), fynbos (n = 4 sites) 

and pine plantation (n = 3 sites), probably due to high variance within sites. Soil organic content 

was therefore considered an unreliable explanatory variable and not used in analyses. 

 

Table 2.3. Descriptive statistics for soil pH, moisture and organic content in each habitat. 

 

Habitat pH Moisture (%) Organic content (%) 

 Min. Max. Mean SD Min. Max. Mean SD Min. Max. Mean SD 

Forest 4.6 6.9 6.15 0.53 9.2 70.9 32.19 13.80 2.6 74.8 24.57 18.50 

Fynbos 4.2 6.7 5.56 0.55 2.3 56.5 18.04 11.90 4.8 85.3 18.31 19.19 

Pine 4.5 6.5 5.50 0.48 5.2 71.4 33.33 14.95 9.1 81.5 28.12 16.06 

Felled 4.3 5.9 4.99 0.42 2.1 70.4 25.71 16.70     
 

Invertebrate identification 

All invertebrates, except earthworms and moths (for the full-scale study) and unidentifiable 

nymphs and larvae (for both the pilot and full-scale studies), were sorted to morphospecies 

using easily recognisable morphological differences (sensu Oliver & Beattie, 1996). As many 

taxa as possible were sent to specialists for further identification (Appendix B). Roughly 20% of 

all morphospecies were not checked or identified further by an expert as none was available. 

Consequently, some unknown degree of identification error is inevitable in these data, with 
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accuracy dependent on prior experience with different taxa and the availability of identification 

keys. Nevertheless, any error in identifications should be consistent across habitats. 

Morphospecies are referred to as species hereafter. The reference collections for taxa identified 

by experts have been deposited in the respective museums of their home countries, while a 

reference collection of the remaining taxa has been deposited in the Iziko South African 

Museum, Cape Town. 
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CHAPTER 3. THE INFLUENCE OF ALIEN PINE PLANTATIONS ON INVERTEBRATE 

DIVERSITY AND SPECIES TURNOVER ON THE CAPE PENINSULA 

 

Introduction 

 

Plantations are popularly considered ‘biological deserts’ (Bonham et al., 2002; Hartley, 2002; 

Brockerhoff et al., 2008) and perceived to support impoverished faunal diversity, compared to 

nearby native forests (Lachat et al., 2006). A global review of biodiversity in plantations revealed 

a general trend (94% of studies) of lower diversity of invertebrates, birds, mammals and plants 

in single-species exotic plantations, compared to natural forests (Stephens & Wagner, 2007). 

Furthermore, 57% of studies comparing exotic plantations to non-forested natural ecosystems, 

such as grasslands and fynbos, also report lower diversity in plantations (Stephens & Wagner, 

2007). In the Brazilian Amazon, lower species richness in exotic plantations compared to 

primary rainforest has been reported for birds (Barlow et al., 2007a), lizards and amphibians 

(Gardner et al., 2007), and dung beetles (Gardner et al., 2008). Lower species richness in exotic 

conifer plantations, compared to native Nothofagus forest, has also been reported for native 

birds in New Zealand (Clout & Gaze, 1984) and for understory plants, epigeal beetles and birds 

in Argentinean Patagonia (Paritsis & Aizen, 2008). 

Similar trends are apparent for South African plantations. Ant diversity (Donnelly & 

Giliomee, 1985) and bird diversity (Armstrong & van Hensbergen, 1994) are lower in pine 

plantations than in fynbos, the Mediterranean-type shrubland in the Western Cape Province. On 

the Cape Peninsula, pine plantations support low native plant diversity (Cowling et al., 1979) 

and low invertebrate diversity (Pryke & Samways, 2009b). Species richness of litter invertebrate 

communities in pine plantations may be half that of contiguous Afrotemperate forest 

(Ratsirarson et al., 2002; Raharinjanahary, 2007). In KwaZulu-Natal Province, similar trends of 

reduced diversity in plantations have been reported for grasshoppers (Samways & Moore, 

1991), butterflies (Wood & Samways, 1991), ground-dwelling invertebrates (Samways et al., 

1996), spiders (van der Merwe et al., 1996) and birds (Armstrong & van Hensbergen, 1995; 

1996). Likewise, in Mpumalanga Province, plantations have a negative impact on grassland bird 

diversity, especially globally threatened species (Allan et al., 1997). However, it should be noted 

that diversity in plantations is not always as low as expected. Samways et al. (1996) report 

lower (but not significantly so) species richness under several invasive alien plant species, 

compared to native vegetation. 
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In addition to impoverished species richness, the composition of invertebrate community 

assemblages in exotic plantations often differ from those of adjacent native vegetation (e.g. 

Samways et al., 1996; Barlow et al., 2007b). Plantation communities are often dominated by 

widespread, generalist species (Magura et al., 2000; Sinclair & New, 2004; Gardner et al., 2007; 

Brockerhoff et al., 2008). Furthermore, several native species may be absent in exotic 

plantations (Tattersfield et al., 2001; Bonham et al., 2002). This is relevant for conservation, 

especially when the species absent in plantations include rare, endemic taxa. 

The impact of alien plantations is expected to be particularly severe in areas supporting 

exceptional invertebrate diversity and endemism, such as the Cape Peninsula (Picker & 

Samways, 1996). The Cape Peninsula’s distinctive invertebrate assemblage is of global 

significance (Cowling et al., 1996) and zoogeographic importance (Jarvis, 1979). Picker & 

Samways (1996) identified 111 endemic invertebrate species on the Cape Peninsula, with 

strong patterns of endemism evident in certain invertebrate groups, such as harvestmen, velvet 

worms and cave Crustacea. The Cape Peninsula boasts the second highest (after 

Pietermaritzburg) millipede species richness and site endemism in South Africa (Hamer & 

Slotow, 2002), although this may be an artefact of collection bias, as previous researchers have 

been based at these locations. Cape Peninsula endemics are mostly palaeo-endemic, 

Gondwanan relictual taxa, with few surviving relatives (Picker & Samways, 1996). Most Table 

Mountain endemics are associated with palaeogenic zones: sandstone caves, forested slopes 

and streams (Picker & Samways, 1996). Sandstone caves on the Cape Peninsula alone support 

21 endemic invertebrate species, far more than any other cave system in southern Africa 

(Sharratt et al., 2000). 

The most inclusive available list of invasive alien animals in South Africa lists 601 

species of vertebrates and invertebrates (Picker & Griffiths, 2011). This is most certainly an 

underestimate, although the number is unlikely to exceed 2500 introduced species, based on 

inventories from other regions: 1590 terrestrial alien invertebrates recorded in Europe (Roques 

et al., 2009), over 2000 alien arthropod species from the continental USA, over 2500 species 

recorded in Hawaii (Pimentel, 2002) and 2200 from New Zealand (Barlow & Goldson, 2002). 

The state of taxonomic knowledge of alien, and indeed native, invertebrates varies greatly 

among invertebrate taxa. Molluscs, like arthropods, are comparatively well-studied. In South 

Africa, there are 34 introduced species of terrestrial mollusc, of which 28 have established and 

20 have been collected in the greater Cape Town area (Herbert, 2010). Raharinjanahary (2007) 

recorded 16 species of alien saproxylic (wood-inhabiting) invertebrates in Newlands Forest on 

the Cape Peninsula, including earthworms, snails, slugs, woodlice, earwigs and ants. The South 
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African National Parks (D. Spear pers. comm., 2010) and South African National Biodiversity 

Institute (T. Rebelo pers. comm., 2011) species databases collectively have records for 60 alien 

invertebrate species on the Cape Peninsula. However, not all of these alien species have been 

recorded inside the national park, several are dubious records, and many are flying insects. 

Consequently, there is an urgent need for a systematic, quantified survey of ground-dwelling 

alien invertebrates in Table Mountain National Park. These alien invertebrates may further 

impact the native invertebrate diversity, either directly, through predation and parasitism, or 

indirectly, by disease transmission, disrupting mutualisms and through interference competition 

(Kenis et al., 2009). 

Facilitative and mutualistic interactions among introduced species can lead to ecological 

impacts on native species that are more pronounced and accelerated than would be expected if 

the invasive species did not act in concert; and there are many examples illustrating this in the 

invasion literature (Simberloff, 2006). Plantations, like woody invasive stands, modify habitat 

and may also facilitate the establishment and spread of invasive alien invertebrates (Lawrence, 

1953). These alien invertebrate species could subsequently penetrate pristine ecosystems 

through corridors of invasive plants. In South Africa the forestry industry is recognized as a chief 

agent in the dispersal of terrestrial alien mollusc species into remote areas, where they have 

subsequently spread into pristine habitats (Herbert, 2010). Invasive ants throughout the world 

also readily spread from human-modified habitats into undisturbed natural areas, when abiotic 

conditions are suitable (reviewed in Krushelnycky et al., 2010). The Argentine ant, Linepithema 

humile, occupies roughly half of South Africa’s land surface area and is well established in 

protected areas (Luruli, 2007), including in Table Mountain National Park on the Cape Peninsula 

(Skaife, 1961; Ratsirarson et al., 2002; Raharinjanahary, 2007; Pryke & Samways, 2010). 

Argentine ant sub-colonies are known to spread into Afrotemperate forest (Ratsirarson et al., 

2002) and mountain fynbos (Christian, 2001), but it remains unclear whether they can establish 

more permanent colonies in undisturbed fynbos (Macdonald & Jarman, 1984; De Kock & 

Giliomee, 1989), as the majority of native habitats invaded are in close proximity to plantations, 

or other sites subject to anthropogenic change. 

This study was undertaken on the Cape Peninsula in Table Mountain National Park 

(Cape Town), a World Heritage Site and global biodiversity hotspot in the Cape Floristic Region. 

On the Cape Peninsula, exotic pine plantations were established in the 1880’s for commercial 

timber production (Cowling et al., 1996; Richardson & Higgins, 1998). These pine plantations 

were largely established in Granite Fynbos (Mucina & Geldenhuys, 2006), but many 

Afrotemperate forest litter invertebrate species have colonised these plantations. 
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The aim of this study is to assess the impact of exotic pine plantations on ground-

dwelling invertebrate diversity (species richness and abundance) and species turnover. Firstly, 

pine plantations are hypothesized to support lower invertebrate species richness and 

abundance, compared to surrounding (often contiguous) Afrotemperate forest and fynbos. 

Based on the findings of Ratsirarson et al. (2002) and Raharinjanahary (2007), species richness 

in pine plantations is predicted to be at least half that of Afrotemperate forest. Pine plantations 

are further predicted to (a) be more similar in species richness to fynbos than to forest, based 

on the findings of Stephens & Wagner (2007) and (b) to support a lower number of Cape 

Peninsula endemics than forest, but have a greater representation of alien species. Secondly, 

the invertebrate community in pine plantations is hypothesized to be more similar to that of 

forest than to that of fynbos; even though these pine plantations originally replaced Peninsula 

Granite Fynbos (T. Rebelo pers. comm., 2010). Plantations provide litter and dead wood 

microhabitats that broadly mimic those in forest, often supporting native forest invertebrate 

species. These pine plantations are predicted to support a mixed invertebrate community 

derived from both native habitats, but showing a closer similarity to the forest community than 

the original habitat, fynbos. As a consequence of their reduced plant diversity, plantations may 

offer fewer niches or microhabitats, and consequently display lower beta diversity than more 

species rich and heterogeneous native vegetation types. Thus pine plantations are predicted to 

have lower beta diversity or species turnover between sites than both Afrotemperate forest and 

fynbos, in terms of their invertebrate communities.  

 

Methods 

 

Study sites and collecting methods 

Refer to Chapter 2 and Appendix A for the location of the sites sampled and collecting methods 

used in Western Cape Afrotemperate Forest (n = 8 sites), fynbos (n = 8 sites: six Peninsula 

Sandstone Fynbos and two Peninsula Granite Fynbos) and pine plantation (n = 7 sites) in Table 

Mountain National Park. Site 11 (pine plantation in Cecilia) was omitted from all analyses, 

because it was unexpectedly clear-felled in January 2009, ahead of the Mountain to Ocean 

(MTO) Forestry Pty (Ltd) proposed felling schedule. Consequently, no pitfall traps, sugar-baited 

ant traps, or decayed logs were sampled at Site 11, compromising its comparability with other 

sites. For each of the other 23 sites, data from the replicates (10 leaf litter, 10 soil, 10 pitfall trap, 

10 sugar-baited ant trap and two decayed log samples) were pooled for a single species 

richness value per site, to avoid problems of pseudoreplication (Hurlbert & Hurlbert, 2004), 



C. Uys, PhD (February 2012). Chapter 3. Biodiversity assessment 

32 
 

inherent spatial autocorrelation within sites (Legendre & Legendre, 1998) and differences in 

catches amongst collecting methods. Refer to Appendix C for a list of species collected in each 

habitat. 

 

Species richness and abundance analyses 

Raw species richness (number of species) and abundance (number of individuals) in each 

habitat were tallied for all invertebrate taxa combined, individual insect orders and non-insect 

classes. Relative species richness and relative abundance in each habitat were each expressed 

as a percentage of the total number of individuals collected for insect orders and non-insect 

classes. 

Species-accumulation curves for the observed species richness of forest, fynbos and 

pine plantation were calculated using Sobs Mao Tau sample-based rarefaction curves, 

randomised 50 times in EstimateS version 8 (Colwell, 2006). The x-axis of these sample-based 

rarefaction curves was re-scaled from sites sampled to individuals. Observed species richness 

counts were re-scaled to obtain abundance-standardised species richness, using the lowest 

number of individuals collected in a habitat (19 614 individuals in pine plantation). Re-scaling is 

necessary when curves do not reach an asymptote and/or there is overlap in the 95% 

confidence intervals, because individual densities vary among samples and species rich 

invertebrate communities are impractical to sample exhaustively (Gotelli & Colwell, 2001; 

Colwell et al., 2004). Estimated total species richness based on abundance (ACE) and 

incidence (ICE) was also calculated for forest, fynbos and pine plantation in EstimateS. Both 

sample-based and abundance-standardised estimated species richness were calculated. The 

non-parametric coverage-based species richness estimators, ACE (abundance-based coverage 

estimator) and ICE (incidence-based coverage estimator) recognise the contribution of rare 

(less than 10 individuals) species (Magurran, 2004). 

Observed species richness counts were re-scaled to obtain abundance-standardised 

species richness, using the lowest number of individuals collected at a site (1340 individuals), in 

EstimateS. Site 25 (forest) and Site 26 (fynbos) were omitted from analyses of re-scaled 

species richness, because they each had a minimum number of individuals greater than the 

1340 individuals cut-off chosen for abundance-standardisation. Mean species richness per site 

was calculated for each habitat, for both observed species richness and abundance-

standardised species richness, using STATISTICA version 9 (StatSoft, Inc., 2009). One-way 

analysis of variance (ANOVA) was performed to test for differences in the observed species 

richness and abundance-standardised species richness amongst forest, fynbos and pine 
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plantation in STATISTICA. Mean abundance per site was calculated for each habitat, and 

compared between sites using a Kruskal-Wallis (ANOVA by ranks) test in STATISTICA, since 

the abundance data were not normally distributed. 

Species-rank abundance curves, also known as dominance plots, were plotted for each 

habitat in PRIMER version 6 (Clarke & Gorley, 2006), to determine if there was greater 

dominance in one habitat. For each habitat, data were pooled across sites, species were then 

ranked in order of importance along the x-axis on a log scale, and their percentage contribution 

to the total was plotted along the y-axis. The x-axis was log transformed for better visualisation 

of the more common species. Typically, most ecological communities have only a few very 

abundant species and many rare species (Magurran, 2004). Dominance, or species evenness, 

can be visually inferred from the slope of the rank-abundance curve (McGill et al., 2007). Steep 

gradients indicate low species evenness, because the high-ranking species have much higher 

abundance than low-ranking species (Magurran, 2004). 

 

Community composition and species turnover analyses 

A triangular matrix of Bray-Curtis dissimilarity of loge (x + 1) transformed community composition 

between sites was used to map the interrelationships of invertebrate communities in cluster 

analysis using complete linkage clustering, and in ordination by non-metric multidimensional 

scaling (MDS), in PRIMER. Data were log-transformed to down-weight highly abundant species. 

Matrices were also constructed for alternative transformations (square root, fourth-root and 

presence-absence), but all gave similar results to log-transformed distance, and hence results 

from those analyses are not reported. Cluster analysis is a simple and intuitively meaningful 

method used to find natural grouping of samples or sites (Magurran, 2004). MDS is also widely 

used for graphical representation of community relationships because of its conceptual 

simplicity, flexibility, dependence only on a biologically meaningful view of the data, 

independence of normally distributed data with equal variance between samples, and its 

distance preserving properties (Clarke, 1993; Clarke & Warwick, 2001). In an MDS plot, the x-

axis represents the direction of maximum variation, with the position of samples (or sites in this 

case) reflecting their dissimilarity. Clusters in an MDS plot are delimited according to the 

percentage dissimilarity among sites in cluster analysis. The stress value acts as a measure of 

reliability, since the risk of drawing false inferences from an ordination increases with greater 

stress. Stress values of less than 0.2 are considered reliable. 

The same Bray-Curtis dissimilarity matrix of log-transformed data was used for pairwise 

analysis of similarity (ANOSIM), to test the null hypothesis of no difference in invertebrate 
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community composition amongst forest, fynbos and pine plantation. ANOSIM is the non-

parametric, multivariate equivalent of ANOVA, applied to the rank dissimilarity matrix using a 

permutation procedure (999 permutations), in PRIMER (Clarke & Green, 1988). It calculates the 

R statistic, which provides a relative measure of separation of predefined groups. The R statistic 

ranges from +1 (all samples within groups are more similar to one another than to any samples 

from another group) to -1 (all samples within groups are more similar to samples from another 

group than to other samples within the group). An R statistic of zero indicates no difference 

among groups (i.e. the null hypothesis of completely random grouping). R-values > 0.75 are 

considered well separated groups, R > 0.50 implies overlapping, but clearly different groups, 

and R < 0.25 indicates that groups are barely separable (Clarke & Gorley, 2006). The 

associated p-values provide statistical confirmation that the samples within groups are more 

similar than can be expected by chance. ANOSIM was used to confirm whether the cluster 

patterns identified in the dendrogram and ordination were statistically significant. 

The number of species unique to each habitat, shared between two habitats, and 

common to all three habitats, was illustrated in a Venn diagram. Dissimilarity between habitats 

was assessed using the Jaccard index of similarity based on shared species presence-absence 

data (Magurran, 2004). The Jaccard index was calculated as: 

Cj = j / (a + b – j) 

where j is the number of species present in both habitats, a is the number of species in habitat A 

and b is the number of species in habitat B. 

Beta diversity, or turnover, relates to species identities and how they change across a 

gradient (Whittaker, 1975), and is therefore a different measure to alpha diversity or local 

species richness (Gray, 2000). The beta diversity measure βsim was chosen as a qualitative 

measure of species turnover, because it is suited to situations where there are large differences 

in species richness counts between sites (Magurran, 2004). This is because βsim is based on 

actual compositional differences (species gains and losses) between assemblages, and is not 

influenced by local species richness gradients (Lennon et al., 2001; Koleff et al., 2003). βsim was 

used to compare species turnover within and between habitats, based on pooled species 

presence-absence data for all taxa combined. To calculate βsim, a (the number of species 

common to both habitats), b (the number of species present in the neighbouring habitat, but not 

in the focal habitat, i.e. species gain) and c (the number of species present in the focal habitat, 

but not in the neighbouring habitat, i.e. species loss) were first calculated for each pair of sites. 

The original βsim equation (Lennon et al., 2001) was re-expressed by Koleff et al. (2003) in terms 

of these matching/mis-matching components (a, b and c) as: 
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βsim = (min (b, c) / (min (b, c) + a) 

Using the smaller value of b or c in the denominator reduces the impact of large differences in 

species richness (Magurran, 2004). Mean species turnover was calculated for each habitat and 

between pairs of habitats, and differences tested for using Kruskal-Wallis ANOVA. 

Spatial autocorrelation was used to determine whether distance had any significant 

effect on beta diversity among sites and habitats. Spatial autocorrelation is the correlation 

between pairs of sites separated by a (spatial) distance (Legendre, 1993). Spatial 

autocorrelation should not be ignored or discounted, because it can produce misleading results 

in analyses of ecological patterns, that lead to inflated Type I errors (falsely rejecting the null 

hypothesis of no effect) (Lennon, 2000; Diniz-Filho et al., 2003; Dormann et al., 2007). Most 

spatial data in ecology show positive autocorrelation, especially in short distance classes, since 

sites in close proximity are often more similar to each other than expected by chance (Diniz-

Filho et al., 2003). 

Spatial autocorrelation in the invertebrate assemblage composition among habitats (i.e. 

for all 23 sites), and within each of the three habitats, was examined using Mantel tests and 

Mantel correlograms (Legendre & Legendre, 1998), using SAM (Spatial Analysis in 

Macroecology version 4.0, Rangel et al., 2006; 2010). Mantel tests were used to compare two 

matrices: a matrix of the Jaccard distance in assemblage composition of sites, calculated from 

species presence-absence data, and a matrix of the geographical distance between sites, 

measured in kilometres. The Mantel Z-statistic (i.e. matrix correlation) tests the statistical 

significance of the relationship between the matrices for each distance class, and is related to 

Pearson’s correlation coefficient. Significance of autocorrelation statistics was tested using 

Monte Carlo permutation tests (999 randomisations) in SAM. Mantel test autocorrelation 

coefficients range from -1 to +1, with positive coefficients indicating positive spatial 

autocorrelation (i.e. sites close together have very similar species composition), and negative 

coefficients indicating negative spatial autocorrelation (i.e. sites close together have very 

different species composition) (Legendre & Legendre, 1998). Under the null hypothesis of no 

spatial autocorrelation, autocorrelation coefficients have an expected value close to zero. 

Mantel correlograms were constructed for the default number of distance classes, using equal 

numbers of pairwise comparisons in each distance class. A correlogram plots the relationship 

between autocorrelated values (in this case, Mantel r values) on the y-axis and separate 

distance classes among sites on the x-axis (Legendre & Legendre, 1998). Correlograms can be 

plotted for single variables, such as species richness, using Moran’s I, or for multivariate data, 

such as assemblage composition, using Mantel tests (Legendre & Legendre, 1998). 
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Cape Peninsula endemic invertebrate species analyses 

The total and mean (± SD) numbers of Cape Peninsula endemic invertebrate species were 

tallied, and the numbers of endemic species per site plotted. Mean numbers of endemic species 

per site were compared using Kruskal-Wallis tests. Dissimilarity in the number of endemic 

species between habitats was assessed using the Jaccard index of similarity based on shared 

endemic species presence-absence data. 

 

Alien invertebrate species analyses 

The total and mean (± SD) numbers of alien invertebrate species were tallied, and the mean 

numbers of alien species per site plotted. Mean numbers of alien species per site were 

compared using Kruskal-Wallis tests. Dissimilarity in the number of alien species between 

habitats was assessed using the Jaccard index of similarity based on shared alien species 

presence-absence data. The percentage contribution of alien species to the number of 

individuals in each habitat, to the total and mean numbers of species in each habitat, and to the 

cumulative total number of species collected, was calculated. The percentage contribution of 

alien species to the total number of species and individuals collected in each habitat was also 

calculated for each group of alien invertebrates. 

 

Results 

 

Species richness and abundance 

A raw total of 92 109 individuals from 670 species was collected from the 23 sites sampled 

(Table 3.1). These species spanned five invertebrate phyla (Annelida, Arthropoda, Mollusca, 

Onychophora and Platyhelminthes), 10 classes and 38 orders. Observed species richness 

ranged from 132-180 species per site in forest, from 65-118 in fynbos and from 83-135 in pine 

plantation. Total observed species richness was lower in pine plantation (311 species) than in 

either forest (455) or fynbos (365). Total abundance was also lower in pine plantation (19 614 

individuals) than in either forest (38 131) or fynbos (34 364). 

Relative observed species richness was lowest in pine plantation for most insect orders 

(Fig. 3.1a). Relative observed species richness in each habitat varied among non-insect 

classes, but was never highest in pine plantation (Fig. 3.1b). Relative abundance in each habitat 

varied among insect orders (Fig. 3.2a). Of the three insect orders most abundant in forest 

(Lepidoptera, Archaeognatha and Dermaptera), only Dermaptera was also abundant in pine 
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plantation. The three most abundant insect orders in fynbos were Blattodea, Hymenoptera and 

Orthoptera. Hemiptera and Psocoptera were numerically dominant in pine plantation, and 

appear to be tolerant of this exotic monoculture. Coleoptera and Diptera had similar 

abundances in each habitat, suggesting that these Orders include both forest and fynbos 

specialists, and many widespread generalist species. Mantodea, Neuroptera, Phasmatodea, 

Thysanoptera and Thysanura were discounted from comparisons, because each was 

represented by very few individuals and only one or two species. The abundance of all non-

insect classes was highest in forest and lowest in fynbos (Fig. 3.2b), while Malacostraca had 

similar numbers in fynbos and pine plantation. 
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Table 3.1. Raw total species richness (number of species) and abundance (number of 

individuals) of invertebrate taxa collected in each habitat, with the number of species unique to 

each habitat in parentheses. 

 
Common name Taxon Species richness  Abundance 

  Total Forest Fynbos Pine  Forest Fynbos Pine 

Ants Formicidae 17 11 17 (4) 12  26 819 29 878 13 546 
Bees Hymenoptera 3 0 3 (3) 0  0 5 0 
Beetles Coleoptera 135 98 (34) 75 (17) 69 (12)  1401 1174 1221 
Bristletails Thysanura 1 1 1 1  167 22 7 
Bugs Hemiptera 75 46 (24) 44 (21) 19 (4)  454 123 843 
Centipedes Chilopoda 11 10 7 9 (1)  134 40 74 
Cockroaches Blattodea 12 7 11 (4) 6 (1)  122 397 24 
Crickets Orthoptera 15 9 (1) 11 (5) 8  154 532 290 
Earthworms Oligochaeta 1 1 1 1  1113 75 263 
Earwigs Dermaptera 5 5 (1) 2 3  135 5 64 
Bristletails Archaeognatha 1 0 1 (1) 0  0 4 0 
Flatworms Turbellaria 1 1 1 1  34 5 22 
Flies Diptera 70 43 (25) 28 (12) 26 (12)  714 630 658 
Harvestmen Opiliones 7 7 (2) 5 5  811 50 101 
Lacewings Neuroptera 1 0 0 1 (1)  0 0 1 
Landhoppers Amphipoda 2 2 2 2  1619 168 235 
Millipedes Diplopoda 10 8 (1) 8 8  852 169 649 
Mites Acari 17 14 (2) 10 15 (2)  359 249 374 
Moths Lepidoptera 1 1 1 1  151 14 8 
Praying mantids Mantodea 2 1 1 (1) 1  1 4 1 
Pseudoscorpions Pseudoscorpiones 5 4 (1) 2 3 (1)  28 14 8 
Psocids/barklice Psocoptera 11 5 (1) 7 (2) 7 (2)  47 18 55 
Scorpions Scorpiones 2 1 2 2  9 22 7 
Slugs Gastropoda 4 4 (1) 3 3  166 37 157 
Snails Gastropoda 16 14 (7) 5 (1) 8 (1)  527 54 91 
Spiders Araneae 106 68 (24) 67 (28) 41 (4)  215 280 138 
Springtails Collembola 19 9 13 (4) 13 (4)  1528 121 444 
Stick insects Phasmatodea 2 0 2 (1) 1  0 13 1 
Sun-spiders Solifugae 1 0 1 (1) 0  0 7 0 
Thrips Thysanoptera 1 1 (1) 0 0  2 0 0 
Velvet worms Udeonychophora 1 1 0 1  6 0 2 
Wasps Hymenoptera 108 77 (48) 30 (14) 42 (14)  380 85 269 
Woodlice Isopoda 7 6 (3) 4 (1) 2  183 169 61 
 Total 670 455 (176) 365 (120) 311 (59)  38 131 34 364 19 614 
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Figure 3.1. Relative observed species richness in each habitat, expressed as a percentage of 

the total species in each taxon for (a) insect orders and (b) non-insect classes. Taxa 

represented by only one or two species (Archaeognatha, Mantodea, Neuroptera, Phasmatodea, 

Thysanoptera, Thysanura, Turbellaria and Udeonychophora) and unidentified taxa (Lepidoptera 

and Clitellata) are omitted. 
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Figure 3.2. Relative abundance in each habitat, expressed as a percentage of the total 

abundance in each taxon for (a) insect orders and (b) non-insect classes. 
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Sample-based cumulative observed species richness was lower in pine plantation (311 ± 

14.0 SD species) than in both forest (455 ± 15.5) and fynbos (365 ± 14.3). Sampling, as 

expected, approached, but did not achieve, saturation (Fig. 3.3a). Re-scaling of the x-axis of 

sample-based rarefaction curves from sites sampled to individuals (Fig. 3.3b) retained forest as 

the habitat with the highest observed species richness. However, an abundance-standardised 

comparison of 19 614 individuals (based on the lowest total abundance, recorded in pine 

plantation) suggests that the true species richness in pine plantation is in fact closer to that in 

forest, and not to fynbos. 

Since accumulation curves did not reach an asymptote, estimated species richness was 

higher than observed species richness in all three habitats for both species richness estimators 

used (Fig. 3.4a). Estimated species richness based on incidence (ICE) was higher in all habitats 

than when based on abundance (ACE), which is not unexpected in patchy (heterogeneous) 

environments. After abundance-standardisation, observed and estimated species richness 

means were lower in both forest and fynbos, but unchanged in pine plantation (Fig. 3.4b). The 

abundance-standardised Sobs and ACE mean species richness were lower in fynbos than in 

pine plantation. The trend of the lowest estimated species richness based on ICE recorded in 

pine plantation remained unchanged. 
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Figure 3.3. Sample-based rarefaction curves of observed species richness in forest, fynbos and 

pine plantation with (a) number of sites sampled and (b) number of individuals. Curves were 

calculated using Sobs Mao Tau and randomised 50 times. Since curves did not reach an 

asymptote, and the 95% confidence intervals (thin lines) for fynbos and pine overlapped, the 

sample-based rarefaction curves were re-scaled to number of individuals. 
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Figure 3.4. Mean ± SD observed species richness (Sobs Mao Tau) and estimated species 

richness based on abundance (ACE) and incidence (ICE) from sample-based rarefaction curves 

(a) of sites sampled and (b) after re-scaling to individuals (i.e. abundance-standardised curves). 

 

Species richness was 1.4-1.5 times higher in forest than in pine plantation, 1.2-1.3 times 

higher in forest than in fynbos, and 1.1-1.2 times higher in fynbos than in pine plantation (Table 

3.2). Ratios varied marginally between observed and estimated species richness, and among 

estimators. Nevertheless, the pattern of highest species richness in forest persisted across all 

estimators. After abundance-standardisation (re-scaling to individuals), forest was only 1.1 times 

richer than pine plantation, but fynbos was no longer richer than pine plantation for either 

observed species richness or estimated species richness based on abundance (ACE). 
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Table 3.2. Ratios of sample-based observed species richness (Sobs) and estimated species 

richness based on abundance (ACE) and incidence (ICE). 

 

Comparison 
Sample-based species richness  Rescaled to individuals 

Sobs ACE ICE  Sobs ACE ICE 

Forest / Pine 1.5 1.5 1.4  1.1 1.1 1.1 

Fynbos / Pine 1.2 1.1 1.2  0.9 0.9 1.1 

Forest / Fynbos 1.2 1.3 1.2  1.2 1.2 1.0 
 

Mean sample-based observed species richness per site was higher in forest (154.6 ± 

16.3 SD species, n = 8) than in both fynbos (99.9 ± 16.7, n = 8) and pine plantation (107.9 ± 

20.6, n = 7). Mean abundance-standardised species richness per site was still higher in forest 

(83.1 ± 26.1 SD species, n = 7) than in both fynbos (59.7 ± 30.5, n = 7) and pine plantation 

(69.7 ± 19.0, n = 7). ANOVA showed a highly significant difference (F = 21.693, df = 2, p < 

0.001) between forest, fynbos and pine plantation sample-based observed species richness. A 

Kolmogorov-Smirnov test confirmed that the residuals were normally distributed (p = 0.936), 

and a Levene’s test confirmed that the variance of the residuals was equal among the three 

habitats (F = 0.855, df = 2, p = 0.440). Tukey HSD for unequal N post hoc tests showed that the 

species richness of forest differed significantly from that of fynbos and pine plantation (p < 

0.001), but fynbos and pine plantation did not differ significantly in sample-based observed 

species richness (p = 0.668). This confirms the patterns of observed and estimated species 

richness (Figs 3.3a and 3.4a). ANOVA of abundance-standardised species richness showed no 

significant difference among habitats (p = 0.256). Mean abundance per site was lower in pine 

plantation (2802.0 ± 1063.6 SD individuals) than in forest (4766.4 ± 3005.3) and fynbos (4295.5 

± 2432.1), although these differences were not significant (Kruskal-Wallis H(N=23) = 2.526, df = 2, 

p = 0.283) due to the high variance among sites within each habitat. 

Very few common (i.e. highly abundant) species were recorded in each habitat, and 

most species were rare, represented by only a few individuals (Fig. 3.5). Species evenness was 

low in all habitats and only a few high ranking species had very high abundance. Dominance 

was higher for the highest ranking species in forest than in fynbos and pine plantation, but was 

similar for lower ranking species, suggesting that there is not greater dominance in one habitat. 
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Figure 3.5. Species-rank abundance curves (x-axis logged) for each habitat to compare 

dominance among habitats. 

 

Community composition and species turnover 

Invertebrate community composition differed among sites within habitats, and among habitats 

(forest, fynbos and pine plantation). However, sites clustered into distinct groups according to 

habitat, with low (15-25%) similarity among habitats, and with forest and pine plantation 

communities more similar to each other than to fynbos (Fig. 3.6a). Similarly, the MDS plot (Fig. 

3.6b) showed forest and pine plantation sites clustered in two distinct groups close to, but not 

overlapping, each other. Fynbos sites separated from forest and pine plantation on the x-axis, 

but showed little similarity to one another, separating out across the y-axis into three clusters: 

Granite Fynbos (Sites 6 and 8), Sandstone Fynbos (Sites 10, 14, 17 and 26) and recovering 

Sandstone Fynbos that was previously under pine (Sites 3 and 30). 
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Figure 3.6. (a) Cluster analysis and (b) ordination from non-metric multidimensional scaling 

(MDS) applied to a Bray-Curtis dissimilarity matrix of log-transformed invertebrate community 

composition amongst sites. Numbers refer to sites (see Appendix A) and symbols to habitats. 

Clusters on the MDS ordination reflect 25% similarity among sites. 

 

ANOSIM confirmed that community composition differed significantly among habitats. 

Forest community composition differed the most compared to pine plantation (R = 0.927, p = 

0.001) and fynbos (R = 0.768, p = 0.001), with the least (although still highly significant) 

difference between fynbos and pine plantation habitats (R = 0.589, p = 0.001), as seen in the 

MDS ordination. An R-value of 0.589 (between fynbos and pine plantation) suggests 

overlapping, although clearly different groups of sites. With the exclusion of the two recovering 

Sandstone Fynbos sites (Sites 3 and 30) that were previously under pine, all pairwise habitat 

combinations showed well separated groups of sites: forest-pine plantation (R = 0.920, p = 

0.001), forest-fynbos (R = 0.923, p = 0.001) and fynbos-pine plantation (R = 0.823, p = 0.002). 

Over half (355) of the 670 species collected were found in one habitat only, while 146 

(21.8%) were common to all three habitats sampled (Fig. 3.7). The number of species shared 
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only between forest and pine plantation (70) was almost double the number shared only 

between fynbos and pine plantation (36). Forest and pine plantation shared the highest number 

of species in total (216, or 32.2% of the 670 collected), and had the highest Jaccard index of 

similarity (Cj = 0.393). Pine plantation supported considerably fewer unique species (59) than 

either forest (176) or fynbos (120). In forest, 103 of the 176 unique species were represented by 

only one individual (singletons) and 24 by two individuals (doubletons). In fynbos, 55 of the 120 

unique species were singletons and 24 were doubletons. In pine plantation, 43 of the 59 unique 

species were singletons and four were doubletons. When expressed as a percentage of the 

total number of species collected in each habitat, singletons contributed a lower percentage in 

pine plantation (13.8% of the 311 species) than in both forest (22.6% of 455) and fynbos (15.1% 

of 365). Similarly, doubletons contributed a lower percentage in pine plantation (1.3% of the 311 

species) than in both forest (5.3% of 455) and fynbos (6.6% of 365). Many of these unique 

species were collected from one site only: 124 species in forest (70.5%), 76 in fynbos (63.3%) 

and 51 in pine plantation (86.4%). Snails, spiders, bugs, beetles, flies and wasps contributed the 

highest number of unique species in all habitats (Table 3.1). 
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Figure 3.7. Venn diagram illustrating the number of unique species in each habitat and the 

number shared between habitats. The number of species is also expressed as a percentage of 

the total 670 species (values in parentheses). The Jaccard index of similarity (Cj) is shown 

between each pair of habitats. 
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Species turnover or beta diversity, calculated as βsim, was high and differed significantly 

both within habitats (Kruskal-Wallis H(N=77) = 23.825, df = 2, p < 0.001) and between habitats 

(Kruskal-Wallis H(N=176) = 69.462, df = 2, p < 0.001). Mean species turnover within habitats was 

slightly lower in pine plantation (0.473 ± 0.058 SD, n = 21) than in forest (0.522 ± 0.115, n = 28) 

and fynbos (0.611 ± 0.078, n = 28). Mean species turnover between habitats was also slightly 

lower between forest and pine (0.527 ± 0.068 SD, n = 56) than between forest and fynbos 

(0.646 ± 0.072, n = 64) and between fynbos and pine (0.652 ± 0.077, n = 56). The high mean 

turnover between habitats reflects the contrasting invertebrate assemblages present in each 

habitat. The furthest distance between any two sites was less than 12 km, which may be too 

close to show any meaningful trend in species turnover with distance. Factors such as site-

specific environmental conditions, disturbance history and vegetation composition may have 

stronger influences on species turnover at this localized spatial scale. 

As expected, no significant spatial autocorrelation among habitats was detected, with p 

> 0.05 for all distance classes (Fig. 3.8a). Positive, but not significant (r = 0.448, p = 0.069) 

spatial autocorrelation was recorded at the shortest distance (1.5 km) in forest (Fig. 3.8b). Weak 

negative, but not significant (r = -0.295, p = 0.248) autocorrelation was recorded at the furthest 

distance class (9.25 km) in forest, with no autocorrelation at middle distance classes in forest 

(Fig. 3.8b). Similar patterns of spatial autocorrelation were recorded in fynbos (Fig. 3.8c), with 

significant positive autocorrelation (r = 0.519, p = 0.006) at the shortest distance (1.15 km). 

Interestingly, the shortest distance class in fynbos was the only significantly autocorrelated 

distance class either among habitats (Fig. 3.8a), or within habitats (Fig. 3.8b-d). Although not 

significant, positive autocorrelation at the two short distance classes (r = 0.333, p = 0.135 at 

1.65 km and r = 0.235, p = 0.262 at 4 km) and weak negative autocorrelation at the two long 

distance classes (r = -0.226, p = 0.298 at 5.6 km and r = -0.125, p = 0.632 at 9.15 km), was 

recorded in pine plantation (Fig. 3.8d). In pine plantation, the most negative autocorrelation was 

not at the longest distance class. This may reflect a break between pine plantations at Cecilia 

Plantation on Table Mountain and Tokai Plantation on Silvermine Mountain, as the two 

mountains are separated by Orange Kloof valley. 
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Figure 3.8. Mantel correlograms showing spatial autocorrelation in invertebrate assemblage 

composition among sites across distance classes (a) among habitats and within (b) forest, (c) 

fynbos and (d) pine plantation. Distance classes were determined by equal number of site pair 

comparisons. The dark square symbol in (c) represents the only distance class for which the 

Mantel test was significant (p ≤ 0.05). 

 

Cape Peninsula endemic invertebrates 

Nine species were identified by taxonomists as Cape Peninsula endemics and/or were amongst 

those listed in Picker & Samways (1996) as being endemic to the Cape Peninsula (Table 3.3). 

Of these, seven were collected in forest, six in fynbos and only one (Uroplectes insignis) in pine 

plantation, although it also occurred in both native habitats. Three Cape Peninsula endemic 

species were unique to forest (Trachycystis perplicata, Spermophora peninsulae and 

Bohepilissus nitidus), and two to fynbos (Dipteretrum brinckae and Hoplophoropyga unicolour). 

Only one endemic species was shared across all three habitats, and no endemic species were 

shared between forest and pine plantation, or fynbos and pine plantation. Consequently, the 

Jaccard index of similarity was much higher between forest and fynbos (Cj = 0.444) than 

between forest and pine plantation (Cj = 0.143) or fynbos and pine plantation (Cj = 0.167). 
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Table 3.3. Distribution of Cape Peninsula endemic invertebrate species by habitat. Total 

abundance (in bold), mean abundance per site (± SD) and number of sites (both in 

parentheses) are given for each species in each habitat. 

 

Order Endemic species Forest Fynbos Pine 

Eupulmonata Trachycystis perplicata (Benson, 1851) 6 (0.8 ±  1.4, n = 3) 0 0 

Araneae Spermophora gordimerae Huber, 2003 6 (0.8 ±  1.8, n = 2) 3 (0.4 ± 0.7, n = 2) 0 

Araneae Spermophora peninsulae Lawrence, 1964 1 (0.1 ± 0.4, n = 1) 0 0 

Araneae Malaika longipes (Purcell, 1904) 14 (1.8 ± 1.6, n = 6) 2 (0.3 ± 0.7, n = 1) 0 

Araneae Moggridgea teresae Griswold, 1987 8 (1.0 ± 1.1, n = 5) 1 (0.1 ± 0.4, n = 1) 0 

Scorpiones Uroplectes insignis Pocock, 1890 9 (1.1 ± 1.5, n = 4) 13 (1.6 ± 2.4, n = 3) 6 (0.9 ± 1.6, n = 2) 

Blattodea Dipteretrum brinckae Princis, 1963 0 53 (6.6 ± 12.9, n = 5) 0 

Blattodea Hoplophoropyga unicolor (Karny, 1908) 0 32 (4.0 ± 5.3, n = 5) 0 

Coleoptera Bohepilissus nitidus Balthasar, 1965 115 (14.4 ± 26.3, n = 7) 0 0 

 

None of the endemic species was collected at all sites within a habitat, and most were 

rare and only collected from a few sites. Only two of the seven pine plantation sites, both in 

Newlands Forest, supported the Cape Peninsula endemic scorpion U. insignis. Forest generally 

had the greatest number of endemic species per site (Fig. 3.9). The mean number of endemic 

species in forest (3.5 ± 1.3 SD species), fynbos (2.1 ± 0.8) and pine plantation (0.3 ± 0.5) was 

significantly different between habitats (Kruskal-Wallis H(N=23) = 15.657, df = 2, p < 0.001), 

reflecting the low number of endemic species recorded in pine plantation. Cape Peninsula 

endemic species made a very low percentage contribution (1.35% cumulatively) to the total 670 

species collected. 
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Figure 3.9. Number of Cape Peninsula endemic invertebrate species collected at each site, with 

mean (± SD) number per habitat in parentheses. 

 

Alien invertebrates 

Nineteen alien invertebrate species were identified, of which 16 were collected in forest, 11 in 

fynbos and 15 in pine plantation (Table 3.4). Alien species contributed a slightly higher 

percentage to the total number of species collected in pine plantation (5.14% of the 311 

species) than in both forest (3.30% of 455) and fynbos (3.01% of 365). Cumulatively, alien 

species contributed only 2.84% to the total 670 invertebrate species collected. 

The total number of individual alien invertebrates was higher in forest (16 663 

individuals) than in both fynbos (4865) and pine plantation (6657). Similarly, the percentage 

contribution of alien species to the total number of individuals in each habitat was higher in 

forest (43.7%) than in fynbos (14.1%) or pine plantation (33.94%). However, these numbers 

were strongly biased by the number of individual Argentine ants collected. With Argentine ants 

excluded, forest still had a higher number of aliens (834 individuals) than both fynbos (319) and 

pine plantation (816). However, pine plantation had almost double the percentage of non-ant 

individuals collected in each habitat: 13.45% compared to 7.37% in forest and 7.11% in fynbos. 

The Jaccard index of similarity was higher between forest and pine plantation (Cj = 

0.722) than between forest and fynbos (Cj = 0.588), or fynbos and pine plantation (Cj = 0.625). 
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Over half of the alien species collected were present in all three habitats, with a further three 

species shared between forest and pine plantation. No alien invertebrate species was shared 

only between forest and fynbos, or only between fynbos and pine plantation. Three alien 

molluscs were found only in forest (Limax maximus, Cochlicopa sp. and Cornu aspersum); with 

the first two restricted to one site each (Table 3.4). One alien springtail (Tomocerus minor) was 

restricted to a single site in fynbos. An alien snail (Lauria cylindracea) and another alien 

springtail (Entomobrya nivalis) were each restricted to a single site in pine plantation. The alien 

Portuguese millipede (Ommatoiulus moreleti) was abundant in all 23 sites. O. moreleti was also 

far more abundant in all habitats than any of the native millipede species. An alien slug (Arion 

hortensis); although less abundant in fynbos, was present at 21 sites. The European wasp 

(Vespula germanica) was present in all habitats, although far less abundant in pine plantation 

than in forest or fynbos. The Argentine ant (Linepithema humile) was present at 16 of the 23 

sites and in all three habitats. 

Mean abundance per site of Argentine ants was higher in forest (1978.6 ± 2571.1 SD 

individuals) than in both fynbos (568.3 ± 1277.6) and pine plantation (834.4 ± 1507.3). Total 

abundance of Argentine ants was also higher in forest (15 829 individuals) than in either fynbos 

(4546) or pine plantation (5841), although these differences were not significant (Kruskal-Wallis 

H(N=23) = 0.178, df = 2, p = 0.915). The number of individual Argentine ants collected at each site 

varied greatly within habitats, with over 1000 individuals (suggesting a nest nearby) recorded in 

each of four forest, one fynbos and two pine plantation sites. 

 



C. Uys, PhD (February 2012). Chapter 3. Biodiversity assessment 

53 
 

Table 3.4. Total abundance (in bold), mean ± SD abundance per site and number of sites (in parentheses) for alien invertebrate 

species collected in each habitat. 

 

Order: Family Species Forest Fynbos Pine 

Eupulmonata: Arionidae Arion hortensis aggregate Férussac, 1819 106 (13.3 ± 8.1, n = 8) 29 (3.6 ±  3.7, n = 7) 131 (18.7 ±  23.4, n = 6) 

Eupulmonata: Limacidae Deroceras panormitanum (Lesson & Pollonera, 1882) 30 (3.8 ± 5.5, n = 8) 4 (0.5 ±  1.1, n = 2) 3 (0.4 ±  1.1, n = 1) 

Eupulmonata: Limacidae Lehmannia valentiana (Férussac, 1821) 28 (3.5 ± 3.0, n = 6) 4 (0.5 ±  1.4, n = 1) 23 (3.3 ±  5.8, n = 2) 

Eupulmonata: Limacidae Limax maximus Linnaeus, 1758 2 (0.3 ± 0.7, n = 1) 0 0 

Eupulmonata: Cochlicopidae Cochlicopa sp. Férussac, 1821 16 (2.0 ± 5.7, n = 1) 0 0 

Eupulmonata: Cochlicopidae Cochlicopa cf. lubricella Férussac, 1821 56 (7.0 ± 19.8, n = 1) 0 3 (0.4 ±  0.8, n = 2) 

Eupulmonata: Pristilomatidae Vitrea contracta (Westerlund, 1871) 13 (1.6 ± 3.1, n = 2) 0 19 (2.7 ±  5.5, n = 3) 

Eupulmonata: Helicidae Cornu aspersum (Müller, 1774) 6 (0.8 ± 1.4, n = 3) 0 0 

Eupulmonata: Punctidae cf. Punctum sp. 35 (4.4 ± 12.4, n = 1) 0 38 (5.4 ±  5.5, n = 6) 

Eupulmonata: Pupillidae Lauria cylindracea (da Costa, 1778) 0 0 1 (0.1 ±  0.4, n = 1) 

Eupulmonata: Oxychilidae Oxychilus draparnaudi (Beck, 1837) 60 (7.5 ± 18.9, n = 3) 2 (0.3 ±  0.7, n = 1) 13 (1.9 ±  4.9, n = 1) 

Eupulmonata: Oxychilidae Oxychilus sp. Fitzinger, 1833 9 (1.1 ± 2.4, n = 3) 10 (1.3 ±  3.2, n = 2) 10 (1.4 ±  3.4, n = 2) 

Julida: Cambalidae Ommatoiulus moreleti (Lucas, 1860) 508 (63.5 ± 35.4, n = 8) 152 (19.0 ±  25.6, n = 8) 546 (78.0 ±  41.7, n = 7) 

Isopoda: Porcellionidae Porcellio scaber Latreille, 1804 49 (6.1 ± 10.9, n = 6) 99 (12.4 ±  27.2, n = 6) 8 (1.1 ±  1.9, n = 3) 

Collembola: Entomobryidae Entomobrya nivalis (Linnaeus, 1758)  0 0 16 (2.3 ±  6.0, n = 1) 

Collembola: Neanuridae Neanura muscorum (Templeton, 1835) 1 (0.1 ± 0.4, n = 1) 4 (0.5 ±  1.4, n = 1) 2 (0.3 ±  0.5, n = 2) 

Collembola: Tomoceridae Tomocerus minor (Lubbock, 1862) 0 1 (0.1 ±  0.4, n = 1) 0 

Hymenoptera: Vespidae Vespula germanica (Fabricius, 1793) 15 (1.9 ± 3.6, n = 3) 14 (1.8 ±  3.3, n = 2) 3 (0.4 ±  0.8, n = 2) 

Hymenoptera: Formicidae Linepithema humile Mayr, 1868 15 829 (1978.6 ± 2571.1, n = 5) 4546 (568.3 ±  1277.6, n = 7) 5841 (834.4 ±  1507.3, n = 4) 
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Every site harboured at least two alien species (Fig. 3.10). The highest number of alien 

species at any one site was 12 (Site 1, forest – in Newlands Forest) (Fig. 3.10). The mean 

number of alien species in forest (7.5 ± 2.1 SD species), fynbos (4.8 ± 1.8) and pine plantation 

(6.1 ± 1.8) was not significantly different between habitats (Kruskal-Wallis H(N=23) = 6.215, df = 2, 

p = 0.447). Alien species contributed a very low and similar percentage of the mean number of 

species collected per site in forest (4.86 ± 1.19 SD %), fynbos (4.78 ± 1.78%) and pine 

plantation (5.80 ± 1.80%). 
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Figure 3.10. Number of alien invertebrate species recorded at each site, with mean number (± 

SD) per habitat in parentheses. 

 

The percentage contribution of alien species to the total number of species (Fig. 3.11a) 

and total number of individuals (Fig. 3.11b) collected in each habitat varied between taxa. The 

percentage contribution of alien species to the total number of species collected in each taxon in 

pine plantation was equal to, or higher than, that in both forest and fynbos (Fig. 3.11a). Snails 

and woodlice showed a higher percentage contribution of alien species in pine plantation than in 

native habitats. Alien species contributed only a small percentage of the species collected 

across habitats for most taxa, with the exception of molluscs, where all slug and half of the snail 
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species collected were alien. Trends differed between species richness and abundance. 

Several alien species were numerically dominant and made a disproportionately high 

contribution to the total number of individuals collected for slugs, snails and millipedes, 

especially in pine plantation (Fig. 3.11b). 
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Figure 3.11. Percentage contribution of alien taxa to the total (a) number of species and (b) 

number of individuals per taxon in each habitat. 
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Discussion 

 

Species richness and abundance 

Pine plantations on the Cape Peninsula supported a surprisingly rich ground-dwelling 

invertebrate assemblage, albeit less rich than that in surrounding native habitats (sample-based 

cumulative observed species richness of 311 species in pine plantation compared to 365 in 

fynbos and 455 in forest). However, this was not the case for abundance, which was 

approximately 50% lower in pine plantations compared to forest and fynbos. Nevertheless, 

species rank abundance curves suggest that species evenness is similarly very low in each 

habitat. Observed species richness was significantly lower in pine plantation than in forest, but 

not significantly lower than in fynbos, as was expected. According to Stephens & Wagner 

(2007), the worldwide literature reports generally lower biodiversity in plantations compared to 

natural forests (94% of studies), but relatively comparable richness compared to non-forested 

natural ecosystems (only 57% of studies report lower diversity in plantations). Re-scaling the x-

axis of sample-based rarefaction curves suggests that the true species richness in pine 

plantation is closer to that in forest and higher than that fynbos. With re-scaling for abundance-

standardisation, estimated species richness patterns differed between ACE (abundance-based 

coverage estimator) and ICE (incidence-based coverage estimator), with ACE showing lower 

species richness in fynbos than in pine plantation. ICE performs well with moderate patchiness 

and small sample sizes (Magurran, 2004), but not when the number of rare species does not 

decrease with increased sampling effort (Colwell & Coddington, 1994). ACE may therefore offer 

a more reliable estimation of true species richness. 

Fynbos supported comparatively low species richness. Fynbos is generally considered 

to support low diversity of ground-dwelling invertebrates (Giliomee, 2003), although quantitative, 

comparative studies are rare. Procheş & Cowling (2006) suggest that fynbos is not as insect-

poor as previously thought, because previous generalisations were based on a handful of insect 

taxa, which appear to be under-represented in fynbos. In their comparative study of fynbos, 

grassland, thicket and karoo vegetation, Procheş & Cowling (2006) found that fynbos insect 

diversity was comparable to that of grassland and subtropical thicket, and richer than Nama-

Karoo. This study is also not in agreement with previous findings of higher species richness in 

fynbos than in forest for epigaeic invertebrates (147 species in fynbos and 123 in forest; Pryke & 

Samways, 2010) and aerial invertebrates (126 species in fynbos and 62 in forest; Pryke & 

Samways, 2008). Pryke & Samways’ findings are likely to be artefacts of the high heterogeneity 

in fynbos vegetation types sampled around the Cape Peninsula. The present study attempted to 
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circumvent possible confounding abiotic and biotic heterogeneity in fynbos by controlling (as far 

as possible) for aspect, elevation and vegetation type. In both studies, Pryke & Samways also 

did not abundance-standardise data in their species rarefaction curves, which did not reach an 

asymptote in any habitat sampled for either taxon, so their richness findings may be misleading. 

The low species richness observed in fynbos, compared to forest, may reflect the low 

cover, shallow depth of litter, and low soil and litter moisture levels found in summer in this 

habitat. Leaf litter depth and composition are known to affect abundance and assemblage 

composition of snails and other invertebrates (Martin & Sommer, 2004 and references therein), 

are often positively correlated with beetle diversity, and may be more important than soil 

moisture in explaining species richness patterns (Hopp et al., 2010). The low rate of litter 

accumulation in fynbos has previously been used to explain the low number of soil and surface-

dwelling invertebrates (Giliomee, 2003). Fynbos leaf litter production is affected by vegetation 

age (time since last fire) and the proportions of restioid, proteoid and ericoid species (Mitchell et 

al., 1986). Fynbos litter also decomposes at a very slow rate (Mitchell et al., 1986). Leaf litter is 

a highly specific microhabitat (Hopp et al., 2010) and the fynbos leaf litter community has 

received insufficient attention in the literature and remains poorly understood. The results here 

suggest that fynbos is not as good a habitat as forest for litter-dwelling invertebrates, which is 

unsurprising, as forest litter is undoubtedly a superior habitat for this fauna. Fynbos litter may 

also represent a more transient habitat, given that fire frequency in fynbos would have occurred 

at 5-50 year intervals (Rebelo et al., 2006), consuming much of the litter, albeit less frequently 

on Table Mountain. In contrast, forest is naturally protected from fire (Rebelo et al., 2006) and 

thus offers a stable litter habitat in ecological and evolutionary time. Forest litter may also have 

greater input from the greater plant biomass compared to fynbos. 

Contrary to prediction based on previous work done in the same area on litter 

invertebrates, species richness in pine plantations was not half that of Afrotemperate forest. 

Forest was only 1.1 times richer than pine plantation after abundance-standardisation, 

compared to the 2.2 times (Raharinjanahary, 2007) and 2.4 times (Ratsirarson et al., 2002) 

reported in earlier studies, and on which this prediction was based. Even before abundance-

standardisation, forest was only 1.5 times richer than pine plantation in this study (Table 3.2). 

Interestingly, for the same sites sampled in Newlands Forest, the observed species richness 

was 1.3 times higher in forest than in pine plantation for both this study and Ratsirarson et al. 

(2002), despite the limited suite of taxa they sampled (Hymenoptera, Opiliones and Amphipoda) 

and their single sampling method (Winkler bag sifted leaf litter extractions). It was previously not 

known whether Newlands Forest, the only area sampled by Ratsirarson et al. (2002) and 
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Raharinjanahary (2007), is indeed representative of forest ground-dwelling invertebrate diversity 

patterns across the Cape Peninsula. Based on the present study, Newlands Forest does appear 

to be fairly representative (at least in forest and pine plantation), since invertebrate species 

richness estimates for the eight areas sampled across the Cape Peninsula suggest 

Afrotemperate forests were 1.1 times richer than pine plantations after abundance-

standardisation. However, species richness varied considerably across sites for all three 

habitats. 

 

Community composition and species turnover 

Species turnover, or beta diversity, was investigated using two complimentary approaches: a 

“raw data” approach of MDS ordination and ANOSIM, and a “distance” approach using the beta 

diversity index ßsim and Mantel tests of spatial autocorrelation. The “raw data” multivariate 

approach measures variation in community composition among sites, whereas the “distance” 

approach measures variation in beta diversity among groups (or pairs) of sites (Legendre et al., 

2005). 

Community composition was significantly different in forest, fynbos and pine plantation, 

with 15-25% (circles on the MDS plot represent 25%) similarity among habitats. Distinct faunal 

assemblages associated with different habitats have been recorded in a range of 

forest/plantation habitats. Samways et al. (1996) found different invertebrate assemblages in 

exotic plantations (of various species) and invasive plants, compared to native woodland and 

grassland, with many species restricted to native vegetation, as was the case in this study. 

Lachat et al. (2006) found different arthropod communities in natural forest, young plantations 

and old plantations in Lama Forest reserve (South Benin), with the lowest species richness 

recorded in young plantations. Hopp et al. (2010) also found different litter-inhabiting beetle 

communities in young secondary and old-growth forests in the Atlantic Forest of Southern 

Brazil, suggesting that time since disturbance strongly influences community composition. Older 

plantation stands, like primary, old-growth forests, generally offer more spatial and vertical 

heterogeneity, better developed soil organic layers, and more accumulated litter and dead wood 

than young stands or young secondary forests, and consequently can support higher diversity 

(Brockerhoff et al., 2008). In this study, forest had the longest “time since disturbance”, having 

been protected from logging since 1888. Forest supported the most distinctive invertebrate 

assemblage (based on ANOSIM results), with fynbos and pine plantation probably having 

roughly equivalent disturbance histories, based on time since last fire (in fynbos) and time since 

last planting (in pine). Actual dates of last fire and planting were not available for all sites 
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sampled, and so disturbance history was not included as an explanatory variable in the above 

analyses, although the relationship is intuitively evident. 

The invertebrate communities of pine plantations were more similar to those of forest 

than fynbos. Pine plantations, by offering a comparable litter and dead wood microhabitat to that 

of forest, extend the distribution range of numerous forest invertebrates, including rare and 

endemic species. In New Zealand, for example, plantations provide habitat for rare species, 

such as kiwi, bats and falcon (Maunder et al., 2005). Plantations may also buffer edge effects 

for small forest patches and increase connectivity (Brockerhoff et al., 2008). This may be 

particularly relevant for forest patches on the Cape Peninsula, which are embedded in a city 

landscape mosaic (Pryke & Samways, 2009b). A future study looking at the conservation 

implications of plantation edge impacts on native forest and fynbos invertebrate communities, in 

which the magnitude and penetration of edge effects are quantified (Ewers & Didham, 2006), is 

recommended. Although increased available habitat and connectivity between patches is often 

desirable in biodiversity conservation, connectivity may have negative consequences. 

Afrotemperate forest patches across the Cape Peninsula are naturally small and fragmented 

(Mucina & Geldenhuys, 2006) and so the connectivity provided by these alien plantations has 

several possible disadvantages. Plantations may facilitate the spread of weeds, pathogens, 

pests and inappropriate genetic material (MacDonald, 2003). Providing connectivity between 

diverging metapopulations of habitat-restricted taxa may facilitate genetic mixing between 

populations and thus reduce the evolutionary potential of such populations, which is not 

desirable for biodiversity conservation. For many forest species, the fynbos matrix surrounding 

forest islands may be an effective barrier to migration and gene flow. Under natural conditions, 

these Afrotemperate forest patches also characteristically have sharp edges, maintained by 

frequent fires in the fynbos matrix. The establishment of pine plantations has altered the natural 

fire regime in fynbos (van Wilgen, 2009), with knock-on effects for invertebrate communities. 

The impact of pine plantations may also be negative for many fynbos invertebrates, 

which cannot colonise and persist in the dense litter and closed canopy tree environment of 

plantations. Plantation edge effects in a range of biotic variables may negatively affect 

ecological processes in fynbos, as they do in other landscapes (Pawson et al., 2008). Changes 

in invertebrate composition are often strongly correlated with a gradient from open (e.g. fynbos) 

to closed (e.g. pine plantation) canopy conditions (Samways et al., 1996; Pawson et al., 2010). 

Of particular concern is the impact of pine on Peninsula Granite Fynbos and its associated 

invertebrate community, because this vegetation type is listed as ‘Endangered’, with very little 

remaining (Granite Fynbos covers only 2% of the Fynbos Biome), and the remaining 
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untransformed Peninsula Granite Fynbos is senescent and invaded by Afrotemperate forest 

trees (Rebelo et al., 2006). Once again, attention must be drawn to the fact that the two 

Peninsula Granite Fynbos sites sampled (Sites 6 and 8 in Kirstenbosch) represent the last 

remaining accessible untransformed patches of Peninsula Granite Fynbos on Table Mountain. 

All pine plantation sites sampled were originally planted over Granite Fynbos, which generally 

occurs at lower altitudes and on richer soil than Sandstone Fynbos. However, pine plantation 

sites clustered closer to Sandstone Fynbos sites than to Granite Fynbos sites in the MDS 

ordination. The Granite Fynbos invertebrate community (at Sites 6 and 8) was very different 

from communities in other vegetation types. This suggests that the fynbos invertebrate species 

that have established in these pine plantations come from the surrounding, often contiguous, 

Sandstone Fynbos patches. The true Peninsula Granite Fynbos litter invertebrate community 

may already be lost on the Cape Peninsula. However, small sample size for Granite Fynbos 

limits the generalisation of this finding. 

Vegetation type (or structure) was the most intuitively parsimonious environmental 

variable explaining invertebrate community composition among habitats, even though other 

environmental variables were not tested statistically. Vegetation structure (forest and fynbos) 

and elevation have also previously been identified as the most important variables for both 

surface-active invertebrates (Pryke & Samways, 2010) and aerial and foliage invertebrates 

(Pryke & Samways, 2008) on Table Mountain. Fynbos type (namely Granite Fynbos and 

Sandstone Fynbos) appears to strongly influence the invertebrate community, with fynbos sites 

separating into three clusters: Peninsula Granite Fynbos, Peninsula Sandstone Fynbos and 

recovering Peninsula Sandstone Fynbos. However, this is confounded to some degree not only 

by the low number of site replicate, but also by the significant positive spatial autocorrelation at 

the shortest distance class in fynbos, since the only two Peninsula Granite Fynbos sites 

sampled are in close proximity to each other, separated by the forest patch in Nursery Ravine at 

Kirstenbosch. Despite the obvious statistical limitations of such low sample size (n = 2 Granite 

Fynbos sites), which are confounded by positive spatial autocorrelation (Legendre & Legendre, 

1998), this should not distract from the management implications of conserving the irreplaceable 

invertebrate community in this Endangered vegetation (Rebelo et al., 2006). 

Sites 6 and 8 at Kirstenbosch were the only Granite Fynbos sites sampled, because 

there are no other suitable, accessible, untransformed Peninsula Granite Fynbos sites left. All 

other low altitude areas that could support Peninsula Granite Fynbos (based on their geology) 

have been transformed into plantations or vineyards. Thus any further sampling in Granite 

Fynbos could only take place at Kirstenbosch and would then constitute pseudoreplication. 
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These two sites were also the only fynbos sites not in close proximity to pine plantations, as 

there are no plantations in, or above, Kirstenbosch National Botanical Garden. By comparison, 

other areas sampled had pine plantation on the lower slopes, buffering the National Park from 

the suburbs and/or vineyards. A possible further explanation for differences in community 

composition between the two Granite Fynbos sites above Kirstenbosch Botanical Garden, 

compared to other sites, could be the influence of the botanical garden itself. Pryke & Samways 

(2009b) report very high species richness and abundance of both ground-dwelling and aerial 

invertebrates in Kirstenbosch National Botanical Garden. They attribute this difference to the 

fact that the botanical garden is cultivating many indigenous plants, which provide habitat for a 

wide range of invertebrate species, and comprises a pesticide-free, well-watered and well-

managed source of invertebrates to colonise adjacent areas of Table Mountain. To confound 

matters further, Sites 6 and 8 were moribund and invaded by some Afrotemperate forest trees 

as a result of the long-standing fire exclusion policy in place in Kirstenbosch. Under more 

natural conditions fynbos maintains dominance in the landscape through regular natural 

burning, since fire excludes forest tree species (Rebelo et al., 2006 and references therein). 

Nevertheless, these sites showed very little community similarity with either forest or pine 

plantation. 

Sandstone Fynbos communities also formed a separate cluster, as did recovering 

Sandstone Fynbos communities previously under pine. Interestingly, the latter clustered closer 

to pine plantation communities than to other fynbos sites, suggesting that they share more taxa 

in common with pine plantation than with other fynbos sites. This was confirmed by omitting 

Sites 3 and 30 in ANOSIM, which resulted in a much higher R-value separating fynbos and pine 

plantation than when these sites were included in the analysis. The impacts of pine plantations 

appear to persist long after clear-felling, as seen from the community composition of Sandstone 

Fynbos sites previously under pine. Afforestation of natural non-forest land, such as fynbos, is 

generally viewed as detrimental to conservation (Brockerhoff et al., 2008). These interpretations 

must however be weighed against the low number of site replicates for these habitats. 

Pine plantation had more species in common with forest than with fynbos, as was 

expected, since the litter and dead wood microhabitats, soil moisture levels and shading effects 

in pine plantation more closely resemble those in forest than those in fynbos habitats. Pine 

plantations may therefore approximate a forest habitat for ground-dwelling invertebrates. 

However, while apparently mimicking forest, pine plantations in fact supported virtually no Cape 

Peninsula endemic species, with habitat generalists and ecologically-tolerant species possibly 

dominating the community. Plantations often support fewer forest specialist species (e.g. 
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carabid beetles) than forest generalist species, which occur across various habitats (Magura et 

al., 2000). Therefore, pine plantations are actually a low quality habitat for leaf litter invertebrate 

fauna, in terms of assemblage composition. 

The high number of unique species found in forest and fynbos (when compared to pine 

plantation) may reflect the presence of many true habitat specialists. Conversely, pine plantation 

relies on donor habitats (including urban and agricultural habitats) as a source of immigrants. 

However, most of these unique species in native habitats were represented by singletons or 

doubletons, and probably include tourists, incidental catches, or genuinely rare species. It may 

also reflect the lack of sampling saturation, despite the fairly extensive sampling effort. 

Nevertheless, the sampling methods employed targeted the litter fauna, which generally has low 

vagility and would be less impacted by visitors (typically flying insects). 

Species turnover was high both within and between habitats and was, as predicted, 

somewhat lower between sites in pine plantation than among sites in either forest or fynbos. 

Individual species generally show naturally patchy distributions (Hammond, 1994; Gotelli & 

Colwell, 2001). This patchiness (i.e. heterogeneity) can be found at all spatial scales (Legendre 

& Legendre, 1998). High turnover is to be expected for ants (Botes et al., 2006a) and other 

ground-dwelling invertebrates (Ferrier et al., 1999; Uys et al., 2009). Yet, even more mobile 

invertebrates, such as Monkey beetles (Scarabaeidae: Hopliini) show high species turnover 

(beta diversity) in southern Africa (Picker & Midgley, 1996; Colville et al., 2002; Colville, 2009). 

The winter rainfall biomes of southern Africa, especially fynbos, show exceptional beta diversity 

in floral diversity patterns (Cowling et al., 1989; Cowling, 1990; Simmons & Cowling, 1996; 

Cowling et al., 1998; Cowling et al., 1999). This high floral species turnover is likely to be 

mirrored in many invertebrate taxa, albeit less so in ground-dwelling and litter taxa, than in 

pollinators and other foliage- and aerial-dwelling taxa. Positive relationships between fynbos 

plant species richness and insect species richness have been reported for a few, non-ground-

dwelling taxa (Wright & Samways, 1998; Procheş & Cowling, 2006). However, Cape Peninsula 

endemic invertebrates show only a weak significant relationship (R2 < 3%) with plant richness, 

since the majority of these endemic invertebrates are neither highly mobile nor concentrated in 

fynbos (Picker & Samways, 1996). This implies that both Afrotemperate forest and fynbos must 

be carefully managed and conserved on the Cape Peninsula, in order to protect this globally 

significant plant and invertebrate diversity. 

Based on a survey of arthropods in Gabon, Basset et al. (2008) recommended reporting 

both species richness and turnover, and cautioned against focussing on species richness alone 

to avoid drawing misleading conclusions about arthropod assemblages in conservation studies. 
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In general, beta diversity should be higher for taxa that are poor dispersers, because dispersal 

ability is inversely related to the rate of species turnover (Qian, 2009; Jimenez-Valverde et al., 

2010). Arthropods exhibit greater spatial turnover than vertebrates (Ferrier et al., 1999). 

Similarly, within the global distribution of vertebrates, beta diversity of birds and mammals is 

less than that of amphibians and reptiles (McKnight et al., 2007; Qian, 2009). 

In addition to dispersal ability of organisms, landscape features also influence beta 

diversity patterns. The highest beta diversity for birds in South Africa coincides with transition 

zones between biomes (van Rensburg et al., 2004). The highest beta diversity for New World 

birds and mammals has been recorded in mountainous areas, with altitude the best predictor of 

beta diversity (Melo et al., 2009). Thus geographical distance alone is not always enough to 

explain species turnover in terrestrial ecosystems and other spatial and environmental 

processes, especially topography, should be considered (Jimenez-Valverde et al., 2010). 

Species turnover both within and between habitats did not increase with distance 

between sites. The cluster analysis and MDS ordination suggest that invertebrate species 

distributions are not clustered along the north-south spatial gradient across the Cape Peninsula, 

the long-axis of which runs north-south, in any of the habitats sampled. Distance alone also did 

not explain species turnover (measured as βsim) for ground-dwelling flightless invertebrates in 

Afrotemperate forest patches in the Drakensberg Mountains, South Africa (Uys et al., 2009). 

These authors reported significant positive spatial autocorrelation between forest patches at 

distances of less than 1.3 km apart, reflecting the similarity of assemblage composition of sites 

within valleys. Spatial autocorrelation at small scales (short distances) is reportedly common for 

soil-dwelling invertebrates in natural (forest and wetland) and managed (pasture and cropland) 

environments (Minor, 2011 and references therein). Dispersal limitations may only prove 

relevant at larger (regional) spatial scales, so that the 12 km north-south distance between the 

furthest sites sampled in this study may not be a meaningful dispersal limitation. 

While there is little evidence for distance-dependent community composition of 

ecosystems over relatively small spatial scales, both environmental variation and geographical 

distance between sites at larger spatial scales determine patterns of species turnover for 

ground-dwelling ants, beetles and spiders in north-east New South Wales, Australia (Ferrier et 

al., 1999) and for macroinvertebrate pond communities in Oxfordshire, UK (Briers & Biggs, 

2005). Hughes et al. (2000) offer two extremes as explanations for changes in species 

composition across a landscape: either gradual changes along spatially autocorrelated 

gradients of environmental variables, or sudden changes between discrete habitat types. More 

often (and most probably in this case), turnover is likely to reflect a combination of these two 
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extremes. Afrotemperate forest on the Cape Peninsula is naturally fragmented, being restricted 

to fire-protected rocky ravines (Rebelo et al., 2006). Given the low vagility of the largely 

wingless, moisture-dependent litter fauna, species turnover would be predicted to be high, 

possibly higher than in more open and contiguous fynbos habitat. This was not supported by the 

turnover values for forest sites, which were on average slightly lower than those for fynbos sites. 

This may reflect the disturbance history and vegetation compositional differences in fynbos. 

Many of the Cape Peninsula endemic taxa, a fair number of which are litter fauna, are widely 

distributed across the Peninsula (Picker & Samways, 1996). Alpha and beta diversity when 

considered in concert suggest that the true invertebrate richness is lower is pine plantations that 

in native vegetation on the Cape Peninsula. 

 

Cape Peninsula endemic invertebrates 

The nine Cape Peninsula endemic invertebrates recorded here are likely an underestimate of 

true invertebrate endemicity at the study sites, since most taxa were only identified to 

morphospecies. Even within taxa identified by taxonomists, many morphospecies could not be 

assigned names, for a number of reasons. For example, the cockroach fauna of South Africa is 

incompletely known, only part of the fauna has been described, and these descriptions are often 

insufficient for a clear species determination (H. Bohn pers. comm., 2010). One new cockroach 

genus and a new species of Ectobius (Blattellidae) were collected in this study, and may well 

represent new Cape Peninsula endemics. Similar taxonomic limitations restricted the 

identification of springtails. Less than half of the springtail species collected in this study could 

be assigned names by a collembolan taxonomist and many of these may turn out to be 

undescribed Cape Peninsula endemics. Most publications on collembolan taxonomy in the 

region come from sporadic and scant collecting, often as by-catch from studies on other focal 

taxa (E. Bernard pers. comm., 2010). 

The number of endemic species recorded is also likely to be underestimated, because 

endemic invertebrates may be rare and/or localized. The 111 invertebrate species recorded in 

the literature as being endemic to the Cape Peninsula (Picker & Samways, 1996) is also 

certainly an underestimate, because little or no information exists for several invertebrate taxa. 

The true number of Cape Peninsula endemic invertebrates may also be underestimated 

because taxa previously considered to have widespread distributions may in reality comprise 

species complexes. Several recent molecular analyses on what were previously considered to 

be widespread species have revealed extensive cryptic species. For example, the velvet worm 

Peripatopsis balfouri, which occurs on the Cape Peninsula and elsewhere, has recently been 
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found to have six evolutionary distinct lineages (Daniels et al., 2009), one of which was present 

in three forest sites and one pine plantation site in this study. Cryptic species are also likely to 

occur in other taxa with limited dispersal capability and desiccation sensitivity (such as molluscs 

and earthworms), that are forest specialists and that occur ecotypically with Onychophora 

(Daniels et al., 2009). 

Of the 111 Cape Peninsula endemic species reported by Picker & Samways (1996), only 

a fraction would be found in the habitats sampled, since many are aquatic, cave-dwelling, or not 

ground-dwelling. Some of the species recorded in the literature (Picker & Samways, 1996) may 

also be extinct, since many of the original records date back many decades. For example, the 

velvet worm, Peripatopsis leonina, has not been collected from its former habitat on Signal Hill 

since it was described in 1900, despite numerous search attempts, and is now considered 

extinct (Hamer et al., 1997; Daniels et al., 2009). Other species sharing this litter habitat might 

have suffered the same fate. 

Two Cape Peninsula endemic cockroach species were found to be widespread and 

abundant in fynbos, but were not recorded in pine plantation. Afforestation may have had a 

negative impact on these cockroaches, by reducing suitable available habitat. Neither 

cockroach was collected at Site 3, a small patch of recovering Sandstone Fynbos that was 

previously under pine. The scorpion Uroplectes insignis was the only Cape Peninsula endemic 

species collected in all three habitats. Although widespread in forest and fynbos, it was only 

collected in pine plantations in Newlands Forest. This implies that alien plantations may not offer 

suitable surrogate habitat for most Cape Peninsula endemic invertebrates, in spite of forest and 

pine plantation sharing a fairly high number of species. Until recently, U. insignis was known 

only from forest on Table Mountain (Prendini, 2005). Raharinjanahary (2007) collected U. 

insignis in both Afrotemperate forest and pine plantation in Newlands Forest, at the same sites 

sampled in this study. Pryke & Samways (2010) also report U. insignis as widespread in fynbos 

and forest across Table Mountain. This species may be expanding its range, possibly in the 

absence of frequent fires on the eastern slopes of the mountain, but more plausibly has simply 

been inadequately surveyed in the past. 

 

Alien invertebrates 

The 19 alien species identified is also likely to be an underestimate of the true alien fauna on 

the Cape Peninsula, since most taxa in this study were identified only to morphospecies, and 

several species are not yet named, so their origin and distribution are unknown (cryptogenic). 

No previous study has focused on alien invertebrates on the Cape Peninsula, although the 
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Argentine ant (Linepithema humile) has received some attention (Picker & Samways, 1996; 

Ratsirarson et al., 2002; Raharinjanahary, 2007; Pryke & Samways, 2010), and 15 other alien 

invertebrate species were collected in Newlands Forest by Raharinjanahary (2007). Table 

Mountain is among the most thoroughly sampled areas for invertebrates in southern Africa 

(Picker & Samways, 1996; Hamer & Slotow, 2002), yet knowledge of its invertebrate fauna 

remains poor. For example, the world’s only known jumping cockroach was recently discovered 

on Table Mountain (Bohn et al., 2010). The value of, and necessity for, a detailed inventory of 

alien invertebrates in a national park of World Heritage status and global biodiversity 

significance seems obvious, and requires urgent attention. Impacts of this alien fauna on the 

endemic Cape Peninsula invertebrates are a major conservation concern. 

European wasps (Vespula germanica), a well-known invasive, have received some 

attention in the Western Cape Province (Tribe & Richardson, 1994), but their distribution and 

status on the Cape Peninsula requires reassessment. Pryke & Samways (2009b) collected only 

two individuals of European wasps in an 18 month sampling period (July 2005 – January 2007); 

both in natural vegetation, suggesting that this species may not inhabit pine plantations and that 

populations may have declined on the Cape Peninsula. However, 32 individuals of European 

wasps were collected during the five month sampling period (September 2008 – February 2009) 

in this study, despite the fact that the sampling methods used did not target flying insects. 

Although numbers collected were lower in pine plantation, European wasps were present in 

forest (three sites), fynbos (two sites) and pine plantation (two sites), and in five of the eight 

areas sampled. A small nest was also observed in a decaying pine log in pine plantation (Site 

22) in Orange Kloof (C. Uys pers. obs., January 2009), suggesting that European wasps can 

survive in pine plantation. 

Since flying insects were not targeted by the collecting methods used in this study, the 

abundance of European wasps is most likely underestimated and biased, and these findings 

must be interpreted with due caution. It does, however, highlight the need for an in-depth, 

targeted study on this species. Most individuals in this study were caught in sugar-baited ant 

traps which would certainly underestimate their presence and abundance as they are not strictly 

ground-dwelling species, although they do hunt for invertebrate prey on the litter surface, and 

are attracted to a carbohydrate source (Harris & Oliver, 1993; Sackmann et al., 2000; Kasper et 

al., 2004). European wasps also occur in the Stellenbosch area and in Jonkershoek Nature 

Reserve (C. Uys pers. obs., March 2010), some 50 km inland, suggesting that they may be 

widespread and well-established in a range of vegetation types in the Western Cape Province. 
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Argentine ants invade new areas by dispersing along roads and water-courses (Human 

et al., 1998). In fynbos, their spread and successful establishment are closely linked with the 

road accessibility of an area, such that most of the old records of Argentine ants in fynbos come 

from residential areas, picnic sites and refuse dumps (De Kock & Giliomee, 1989). Table 

Mountain National Park has many mountain streams and is serviced by a network of roads and 

well-used paths, especially in the pine plantations, all potentially facilitating the spread of this 

invasive alien species into native vegetation. It appears as if Argentine ants can establish and 

maintain colonies in fynbos, since in this study at least one confirmed nest was found in fynbos, 

and the species was present in seven of the eight fynbos sites sampled. Pryke & Samways 

(2010) also recorded Argentine ants in fynbos at similar elevations (240-400 m a.s.l.) on the 

western, southern and eastern slopes of Table Mountain. Raharinjanahary (2007) reports 

Argentine ants only below 350 m in Newlands Forest. Both of these studies are within the 

altitudinal range at which Argentine ants were collected in this study, i.e. 130-520 m a.s.l. 

(although they were most abundant below 400 m a.s.l.). It is of concern that the abundance and 

number of nests was much higher in forest than in pine plantation, where Argentine ants were 

expected to be most abundant. Argentine ants have probably been well established in 

Afrotemperate forest on the Cape Peninsula for many years, and have been recognized as a 

threat to native invertebrate diversity in previous studies (Picker & Samways, 1996; Ratsirarson 

et al., 2002; Raharinjanahary, 2007; Pryke & Samways, 2010). 

 

Conclusion 

Studies assessing both species richness and community composition often show more negative 

impacts of plantations on community composition than studies focussed on species richness 

alone, even though the literature is biased towards assessing species richness, rather than 

community composition (Su et al., 2004). Inferences on the impacts of plantations based on 

species richness assessments alone should be interpreted with caution, especially in 

assessments of arthropod diversity (Basset et al., 2008). Nevertheless, this study adds to the 

growing body of evidence showing that exotic plantations have lower species richness and 

different community assemblages, compared to neighbouring native forest, in South Africa and 

globally. 

More importantly, pine plantations on the Cape Peninsula may also have negative 

impacts on the fynbos-specialist invertebrate community, whose available habitat has 

diminished through afforestation. Pine plantations have both direct effects on fynbos 

invertebrate communities through habitat-replacement, and indirect effects through negative on-
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site and off-site effects. Exotic plantations are considered detrimental when afforestation takes 

place in natural non-forest land (Brockerhoff et al., 2008), even though they may hold 

biodiversity value in some circumstances (e.g. Brockerhoff et al., 2008), and may provide a 

novel habitat for native forest species (Quine & Humphrey, 2010). 

Although the pine plantations sampled in this study are not ‘biological desserts’ (Bonham 

et al., 2002; Hartley, 2002; Lachat et al., 2006; Brockerhoff et al., 2008), and do not create a 

binary landscape of suitable versus unsuitable habitat (Ricketts, 2001), they hold low 

conservation value in this landscape. Compared to forest and fynbos, pine plantations 

supported much lower invertebrate abundance, fewer unique species, only one Cape Peninsula 

endemic species, about the same number of alien invertebrate species, and lower species 

turnover (beta diversity). The current pine plantation litter community has more in common with 

Afrotemperate forest, and less with the original Granite Fynbos community which was displaced 

by the pine plantation. 
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CHAPTER 4. IMPACTS OF ARGENTINE ANTS AND OTHER ALIEN INVERTEBRATES ON 

NATIVE GROUND-DWELLING INVERTEBRATES ON THE CAPE PENINSULA 

 

Introduction 

 

The British ecologist, Charles Elton, prophetically warned of the dangers arising from invasive 

alien species: “The real thing is that we are living in a period of the world’s history when the 

mingling of thousands of kinds of organisms from different parts of the world is setting up terrific 

dislocations in nature. We are seeing huge changes in the natural population balance of the 

world” (Elton, 1958). Invasive alien species are now widely recognised as the second greatest 

threat to global biodiversity, after habitat destruction (Wilcove et al., 1998; Simberloff, 2001). 

Despite this, the degree, impacts and consequences of invasion by most invasive alien species, 

particularly invertebrates, remain poorly understood. In a review of the ecological effects of 

invasive alien insects, Kenis et al. (2009) report that only 72 invasive insect species had been 

studied worldwide, of which 54 showed evidence for ecological impacts in the field. Although the 

number of invasive insect species known to have an effect on biodiversity appears to be 

disproportionately low, this most likely reflects a lack of investigations, rather than a lack of 

effect, since the vast majority (over 80%) of studies conducted on invasive insects do report 

significant effects (Kenis et al., 2009). This introduction reviews the invasion history and impacts 

of invasive ants and other alien invertebrates, focusing on the litter taxa collected in this study. 

The ecological impacts of invasive alien species affect all levels of organization (genetic, 

population, community and ecosystem levels) and differ among herbivores, predators, 

parasites, parasitoids and pollinators (Kenis et al., 2009). Through collective direct and indirect 

effects, invasive alien species can displace native species, disassemble the remaining 

communities (Sanders et al., 2003) and disrupt various ecosystem processes (O’Dowd et al., 

2003). In a review of case studies of biological invasion from 1980 to 2006, spanning 892 

species in most taxonomic groups from around the world, 36.3% of studies focussed on the 

biology and ecology of invertebrates, with the Argentine ant (Linepithema humile) receiving the 

most research attention among terrestrial invertebrates (Pyšek et al., 2008). Another review of 

403 primary research papers dealing with the impacts of invasive insects (1900-2007 inclusive) 

revealed that 41% concerned invasive ants, with two species (Red imported fire ant, Solenopsis 

invicta, and Argentine ant, L. humile) dominating the literature (Kenis et al., 2009). These two 

species, together with the Yellow crazy ant (Anoplolepis gracilipes), Big-headed ant (Pheidole 

megacephala) and Little fire ant (Wasmannia auropunctata) are listed among the 100 of the 
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world’s worst invasive species (Lowe et al., 2000). More recently, other invasive ant species 

have received more attention (reviewed in Lach & Hooper-Bùi, 2010). Invasive ants are a 

globally-pervasive ecological problem because of their expanding geographic ranges, high 

propagule pressure, high local abundances and ability to disrupt ecosystem processes (Holway 

et al., 2002). 

The most widely documented impact of ant invasions is the displacement of native ants, 

although only a handful of studies use direct experimental approaches to document such 

displacements (Holway et al., 2002). Most reports of decreases in native ant species richness 

with invasion come from studies of Red imported fire ants and Argentine ants (Holway et al., 

2002). Argentine ants have reduced native ant diversity in California (e.g. Holway, 1998), Hawaii 

(Cole et al., 1992), Australia (Rowles & O’Dowd, 2007), Japan (Touyama et al., 2003) and other 

invaded locations. Argentine ants have also been reported to reduce ant species richness in 

South African fynbos and to replace dominant native ants, in particular, ground-foraging, seed-

dispersing ant guilds (Bond & Slingsby, 1984; Parker-Allie et al., 2008). 

The presence of Argentine ants in fynbos is therefore of urgent conservation concern, 

because up to 30% of the fynbos flora (including 50% of the Proteaceae) depends on seed 

dispersal by ants (Bond & Slingsby, 1984). Argentine ants include seed in their diet, but do not 

bury them, unlike many of the native ants (Christian, 2001). This is problematic, because the 

two abundant native ant species (Anoplolepis custodiens and Pheidole capensis) that are the 

most effective dispersers of large-seeded proteas are displaced or eliminated by Argentine ants 

(De Kock & Giliomee, 1989; Christian, 2001; Witt et al., 2004). This results in substantially lower 

post-fire recruitment of large-seeded fynbos species. Ant species such as Meranoplus 

peringueyi and Tetramorium quadrispinosum that are able to coexist with Argentine ants (Luruli, 

2007) are not big enough to carry large, heavy seeds (Christian, 2001). This leads to altered 

plant species composition in invaded fynbos communities, due to the localised decline of large-

seeded myrmecochorous plant species. Similar reduced seed dispersal has been reported in 

California in areas invaded by Argentine ants, compared to control areas dominated by native 

harvester ants (Pogonomyrmex subnitidus) that also disperse seeds (Carney et al., 2003). 

Exploitative and interference competition are two of the most important mechanisms 

contributing to the competitive nature of Argentine ants, and explain their ability to displace 

native ant species (Human & Gordon, 1997). Argentine ants show rapid recruitment, high 

abundance, high territoriality and intense interspecific aggression (Rowles & O’Dowd, 2007). 

Native ant species with similar niche preferences to Argentine ants are most vulnerable to 
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displacement. Epigaeic (above-ground foraging) species are consequently more affected than 

hypogaeic (below-ground foraging) species (Harris, 2002). 

Argentine ants, when numerically dominant, also surpass native ant species in exploiting 

resources, because they show generalist feeding behaviour and are omnivorous, consuming a 

variety of food resources. Argentine ants display flexible patterns of resource use and a shift in 

diet after establishment, as a result of resource depletion (Tillberg et al., 2007). Although they 

are amongst the most carnivorous of ants (Tillberg et al., 2007), they also feed extensively on 

liquids (Zee & Holway, 2006), showing a preference for hemipteran honeydew (Silverman & 

Brightwell, 2008). The monopolisation of carbohydrate-rich resources, such as plant and 

hemipteran exudates, has been reported for all of the most important invasive ant species 

(Lach, 2003). This is thought to contribute to their invasion success (Holway et al., 2002; 

O’Dowd et al., 2003; Rowles & Silverman, 2009; Lach et al., 2010). Argentine ants generally 

choose nest sites in close proximity to a food source, but are able to forage up to 60 m away 

from their nest (Silverman & Brightwell, 2008). 

Argentine ants are unicolonial, forming supercolonies with thousands of workers and 

multiple queens, distributed among interconnected nests (Tsutsui & Suarez, 2003; Holway & 

Suarez, 2004; Walters & Mackay, 2005; Heller et al., 2006). In contrast, native ants typically live 

in small colonies with a single nest, with only one queen per nest, and colonies react 

antagonistically to non-colony members (Hölldobler & Wilson, 1990). Local-scale colony spread 

of Argentine ants occurs via budding, rather than by queens using long-distance dispersal 

through nuptial flights (Silverman & Brightwell, 2008). This ensures that dispersing queens are 

accompanied by high numbers of workers, which then dominate and suppress native ant 

species along the colony’s expanding border. Accordingly, interference competition, resource 

exploitation, and highly polygynous (multiple queens per nest) and polydomous (multiple nests 

per colony) life history traits all contribute to the invasion success of Argentine ants. 

Behavioural and life history traits, niche dimensions and biogeographic affinities are the 

basis on which functional groups have been assigned for ant genera. Niche dimensions, such 

as diet, nest location and time of foraging are indicative of broad-scale, worldwide responses of 

the component taxa to disturbance and environmental stress (Andersen, 1997a). Argentine ants 

have been assigned to the Dominant Dolichoderinae functional group, members of which are 

characteristically abundant, highly active and aggressive ants, with a strong competitive 

influence on other ant species (Andersen, 1997a). Not all dolichoderines show behavioural 

dominance, and the Dominant Dolichoderinae functional group is not represented in the native 

southern African ant fauna, where behavioural dominance has instead evolved in the formicines 



C. Uys, PhD (February 2012). Chapter 4. Alien invertebrate impacts 

72 
 

(Anoplolepis custodiens group) and some myrmicines (Pheidole, Monomorium and 

Crematogaster spp.) (Majer et al., 2004; Parr, 2008). Dominant Dolichoderinae are also absent 

in cool-temperate regions elsewhere (except for parts of Australia) and formicines (e.g. Formica) 

dominate throughout the Holarctic. Subordinate Camponotini (e.g. Camponotus) co-occur with 

Dominant Dolichoderinae, because they are behaviourally submissive, have a large body size 

and often forage nocturnally (Andersen, 1997a). Camponotus spp. are also naturally 

subordinate in the presence of behaviourally dominant southern African ants (Parr, 2008). 

Opportunists (e.g. Tetramorium) can also coexist with Argentine ants, because they generally 

occur in disturbed habitats that support low ant diversity (Hoffmann & Andersen, 2003). 

Conversely, Tropical Climate Specialists (e.g. Tetraponera) and Hot or Cold Climate Specialists 

(e.g. Meranoplus and certain Monomorium spp.) favour habitats where Dominant 

Dolichoderinae are not abundant (Andersen, 1997a). Generalized Myrmicinae show a range of 

responses to Argentine ants and other Dominant Dolichoderinae, from co-occurrence through 

little or no direct interaction (e.g. Crematogaster: Addison & Samways, 2000; Brown, 2000), co-

occurrence through the use of chemical secretions that repel Argentine ants (e.g. Monomorium: 

Holway, 1999; Hoffmann & Andersen, 2003), to displacement by Argentine ants due to similar 

resource requirements (e.g. Pheidole: Bond & Slingsby, 1984; Witt & Giliomee, 1999). 

These impacts are of conservation concern, because Argentine ants are well-

established in natural environments on the north-eastern Iberian Peninsula (Roura-Pascual et 

al., 2010), in coastal California (Holway & Suarez, 2006) and in North Carolina (Rowles & 

Silverman, 2010). They are equally well-established in protected areas in the Western Cape 

(Luruli, 2007), including Jonkershoek Nature Reserve near Stellenbosch (Witt, 1993), Kogelberg 

Biosphere Reserve near Hermanus (Bond & Slingsby, 1984; Christian, 2001), Helderberg 

Nature Reserve outside Somerset West (Boonzaaier, 2006) and Table Mountain National Park 

in Cape Town (Picker & Samways, 1996; Pryke & Samways, 2009b; 2010). The extent of 

impacts caused by Argentine ant invasion in the Western Cape is not yet fully described or 

understood. 

The impacts of invasive ants are not always simply detrimental. Some studies show no, 

or only weak, community-level effects (Holway, 1998; Walters, 2006; Rowles & Silverman, 

2010). Ground-dwelling taxa that prey on ants may benefit trophically from ant invasions; for 

example, ant-lions in California (Glenn & Holway, 2008) and myrmecophagic spiders in Japan 

(Touyama et al., 2008). The magnitude of the impacts of Argentine ants on native, non-ant 

invertebrates, especially ground-dwelling arthropods, is often proportional to the degree of 

evolutionary coexistence of the native invertebrate community with aggressive native ant 
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species (Hoffmann & Parr, 2008 and references therein). Island faunas that lack native ants 

suffer the most devastating effects from invasive ants. In Hawaii, spiders and predatory beetles 

(especially native carabids) are especially negatively affected by invasive ants (Cole et al., 

1992; Holway et al., 2002; Liebherr & Krushelnycky, 2007), and compositional changes occur 

most often among endemic arthropods (Krushelnycky & Gillespie, 2008). Impacts may also be 

greater on the edge of habitat fragments. For example, the abundance and species richness of 

Acari, Hemiptera, Coleoptera, Diptera and non-ant Hymenoptera are negatively correlated with 

Argentine ant abundance in urban habitat fragments in coastal southern California (Bolger et al., 

2000). 

Soft-bodied taxa, such as Collembola and larval Lepidoptera, appear to be exceptionally 

vulnerable to invasive ants (Cole et al., 1992; Human & Gordon, 1997; Rowles & O’Dowd, 

2009). Woodlice and cockroaches are able to persist in the presence of invasive ants, probably 

because they are protected by their hard, often armoured exoskeletons (Hoffmann & Parr, 

2008), and may even show greater abundance at invaded sites (Human & Gordon, 1997; Bolger 

et al., 2000; Walters & Mackay, 2003). Amphipods are either more abundant in invaded areas 

(Walters & Mackay, 2003), or show no change in numbers with invasion (Walters, 2006) in 

South Australia. Psocoptera and other scavengers may increase in abundance with invasion, 

because the versatility of their diets helps reduce direct resource competition with invasive ants, 

and an increased ant biomass means that more dead ants and prey remains are available for 

scavengers to feed on (Bolger et al., 2000; Walters & Mackay, 2003; Rowles & O’Dowd, 2009). 

Many honeydew-producing Homoptera, such as scale insects, mealybugs, aphids and 

membracids, readily establish symbiotic relationships with alien ants (Holway et al., 2002). 

This ability to establish mutualisms with native membracids enables Argentine ants to 

interfere with natural pollination mechanisms. In fynbos, Argentine ants are attracted to native 

honeydew-producing membracids (Beaufortiana sp.) in Protea inflorescences, and this 

mutualism facilitates pollinator deterrence by Argentine ants (Lach, 2007). Protea nitida, and 

probably many other fynbos Protea species, suffer a decline in insect pollinator visitation and a 

resultant decline in seed set in the presence of Argentine ants (Lach, 2007). Argentine ants also 

consume floral nectar, which further negatively affects arthropod pollinators (Visser et al., 1996). 

Pollen-limited, arthropod-pollinated plants are the most susceptible to invasive ants; as 

evidenced in other parts of the world. In Hawaii, Argentine ants threaten insect-pollinated plants, 

such as Metrosideros polymorpha, by depleting floral nectar and displacing native bee 

pollinators (Cole et al., 1992; Lach, 2005; 2008). In Spain, Argentine ants threaten Euphorbia 

characias by decreasing visitation times by fly pollinators and overall numbers of arthropod 
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visitors (Blancafort & Gomez, 2005) and by displacing native ant pollinators (Blancafort & 

Gomez, 2006). 

By displacing native ants, Argentine ants also have the potential to disrupt the obligatory 

associations between larvae of myrmecophilous lycaenid butterflies and their native ant hosts 

(Heath & Claassens, 2003). Myrmecophiles spend at least part of their life cycle in ant colonies, 

as commensals, mutualists, or parasites (Hölldobler & Wilson, 1990). On Table Mountain (Cape 

Peninsula, South Africa), at least 12 of the 27 Lycaenidae are myrmecophiles, several of which 

are regional endemics (e.g. Thestor) and on the IUCN Red List of Threatened Species. Hence, 

potential disruptions to these ant-butterfly mutualisms by invasive ants could further threaten 

these already sensitive species. In Australia, 39 of the 56 obligate lycaenid myrmecophiles have 

distributions that overlap with Argentine ants, or other invasive ants, and it is not yet known 

whether these invasive ants tend, or prey on, the lycaenid larvae (Lach & Thomas, 2008). 

Argentine ants more likely indirectly affect lycaenid larvae by suppressing numbers of native 

host ant species. 

Argentine ants even displace vertebrates (Kenis et al., 2009). Anecdotal, correlative and, 

more recently, experimental evidence show adverse effects of various invasive ants on birds, 

mammals and herpetofauna (summarised in Lach & Hooper-Bùi, 2010). The impacts of 

Argentine ants on vertebrates in southern Africa have not yet been investigated and, although 

beyond the scope of this study, may be important in cases of rodent pollinated flowers (Wiens & 

Rourke, 1978). Several proteas have ground-hugging flowers that are adapted for pollination by 

ground-dwelling rodents that also feed on nectar and insects visiting the inflorescences. Many 

other proteas are brightly coloured and carry their blooms high in the tree to attract avian 

pollinators, such as Cape Sugarbirds. High numbers of Argentine ants may reduce the visitation 

rates of these pollinators. 

The European wasp (also known as German wasp or Yellowjacket), Vespula germanica, 

is native to Eurasia and North Africa (Archer, 1998). It has successfully invaded and established 

populations in the United States, Canada, Ascension Island, New Zealand, Australia, Tasmania, 

Chile, Argentina and South Africa (Archer, 1998). V. germanica was unintentionally introduced 

to the Western Cape Province, South Africa, probably prior to 1970, and was first recorded on 

the Cape Peninsula in 1974 (Whitehead & Prins, 1975). It has established populations in 

relatively undisturbed natural vegetation on the Cape Peninsula (Richardson et al., 1992), 

although these are mostly in moist localities associated with mountains, such as in dense forest 

on Table Mountain (Whitehead & Prins, 1975). Fynbos is considered a marginal habitat for the 

establishment of colonies, as a result of low arthropod prey abundance (Tribe & Richardson, 
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1994). Compared to New Zealand and Tasmania (Davidson, 1987), expansion in South Africa 

has been very slow, despite the entire eastern coastal region being seemingly climatically 

suitable (Tribe & Richardson, 1994). The harsher, drier conditions on the Cape Flats (Fynbos 

Biome) may have prohibited range expansion beyond the Cape Peninsula (Tribe & Richardson, 

1994), although in recent years this species has spread inland to Stellenbosch and as far as the 

Hottentots Holland mountains. Population numbers also appear to show large annual 

fluctuations in the Western Cape, although this trend is yet to be quantified (T. Wossler pers. 

comm., 2010). Although not strictly ground-dwelling, the European wasp is included in this study 

because of its ground-nesting habit and known impacts on other ground-dwelling invertebrates. 

European wasps have injurious effects on both native wasp species and other native 

arthropods. Evidence for such detrimental impacts comes from semi-urban scrubland-pastures 

(Harris & Oliver, 1993) and beech forests (Beggs, 2001) in New Zealand. Adult European wasps 

catch invertebrate prey to meet the requirements of their larvae for fresh protein (Caron & 

Schaefer, 1986). Diptera, Hymenoptera, Lepidoptera larvae and Araneae are the most common 

invertebrate prey items taken by European wasps in New Zealand (Harris & Olivier, 1993), 

Australia (Kasper et al., 2004) and Argentina (Sackmann et al., 2000). Although no equivalent 

dietary study has been undertaken in South Africa, the most common invertebrate prey items 

taken are likely to include the same taxa, since these are amongst the most commonly found in 

nature. This suggests that European wasps are generalist, rather than selective, predators 

(Sackmann et al., 2000). They also compete with birds for insect food resources, effecting entire 

insectivorous bird communities in New Zealand (Harris, 1991; Beggs, 2001). In addition to 

protein prey items, European wasps also forage for water, pulp and carbohydrates (Kasper et 

al., 2004). Adults collect wood pulp for building nests and require carbohydrates as an energy 

source (Caron & Schaefer, 1986). Adults mostly feed on nectar, but also pierce soft fruits, such 

as grapes, pears and plums, compromising soft-fruit and wine industries. By removing large 

quantities of honeydew (a carbohydrate source), European wasps may alter nutrient cycling by 

decreasing the flow of carbon to soil microorganisms (Beggs, 2001). Removal of honeydew may 

have additional indirect effects on the ecosystem and on other invertebrate taxa, such as ants, 

that also utilize this resource. 

Molluscs have received more attention than most other non-insect invertebrate taxa, 

most often for their notorious economic impacts. Six molluscs, including the terrestrial Giant 

African snail (Achatina fulica) and Rosy wolf snail (Euglandina rosea), are among the 100 of the 

world’s worst invasive alien species (Lowe et al., 2000). Despite severe impacts for agriculture, 

a long history of invasion (over 150 years for several species), and establishment in relatively 
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undisturbed natural areas (Herbert, 2010), alien terrestrial molluscs have received inadequate 

attention in the South African literature, even in reviews discussing alien invertebrates (Lach et 

al., 2002). Herbert (2010) inventoried the South African alien terrestrial mollusc fauna, listing 34 

introduced species, of which 28 have established. Most terrestrial mollusc introductions have 

taken place in Cape Town, because it is a major port of entry, has a long European colonial 

history (dating back to the 1600s) and a temperate, Mediterranean climate. Twenty alien 

mollusc species have been collected in Cape Town – more than all other South African localities 

combined. Of the 34 introduced terrestrial mollusc species in South Africa, 25 have also invaded 

southern Australia, which shares a similar Mediterranean climate, and 19 have invaded New 

Zealand (Smith, 1992; Barker, 1999; Herbert, 2010). This resemblance is not surprising, as both 

Australia and New Zealand share a comparable colonial history with South Africa. 

Since most millipedes are phytophages, saprophages or detritivores, alien millipedes are 

unlikely to pose a serious threat to native biodiversity and ecosystems (Baker, 1985; Stoev et 

al., 2010). Some millipedes have, however, attained pest status in their invaded habitats. The 

Portuguese millipede (Ommatoiulus moreleti), native to the Iberian Peninsula, was introduced to 

Australia in 1953, where it quickly reached “plague proportions” and invaded houses in spring 

and autumn (McKillup et al., 1988; Stoev et al., 2010). O. moreleti numbers typically explode in 

newly-invaded areas in Australia, then decrease over time, possibly due to food shortages 

(Baker, 1985), or control by a native rhabditid nematode (McKillup et al., 1988). These “boom 

and bust” dynamics of invasive alien species have also been reported for terrestrial mammals, 

aquatic plants and marine invertebrates (reviewed in Parker et al., 1999). O. moreleti is also 

considered a nuisance in South Africa (Lawrence, 1984). 

Alien woodlice are largely confined to urban environments, where they often become 

dominant detritus feeders (Cochard et al., 2010). The ability to rapidly build up large numbers 

and exploit resources more successfully than native species (Sutton, 1972), means that 

successful invasion of relatively natural habitats can lead to disturbance (Cochard et al., 2010). 

Armadillidium vulgare, Porcellionides pruinosus and Porcellio scaber are considered 

“synanthropically cosmopolitan” woodlice species (Cochard et al., 2010). The Rough woodlouse 

(P. scaber), which originates from southwestern Europe, has colonised the rest of Europe and 

many other parts of the world, including Africa (Slabber & Chown, 2002). It has been recognised 

as an invasive alien species in South Africa for many decades (Lawrence, 1953). It also spread 

from South Africa to Marion Island, probably arriving in building supplies from Cape Town in 

April 2001 (Slabber & Chown, 2002). 
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While there have been numerous studies on Argentine ant impacts in South Africa, 

including a few previous studies on Table Mountain, this study is unique in its direct attempt to 

inventory the entire community of alien invertebrates and to assess their impacts on native 

invertebrates on the Cape Peninsula. The first aim of this study is to investigate the impacts of 

invasive alien Argentine ants on (a) native ants and (b) other invertebrates in Table Mountain 

National Park. The literature suggests that native ant species richness and abundance will be 

largely reduced at sites where Argentine ants have invaded (i.e. are present), compared to 

uninvaded sites. Community composition of native ants is also expected to differ between 

Argentine ant invaded and uninvaded sites, with greater similarity between invaded sites across 

habitats. 

The species richness and abundance of non-ant invertebrates and Cape Peninsula 

endemics are predicted to be lower at sites where Argentine ants are present than at sites 

where they are absent. Conversely, the species richness and abundance of alien invertebrates 

is predicted to be higher at sites invaded by Argentine ants. The impacts of invasion by 

Argentine ants are predicted to differ between taxa, but generally to be negative, with lower 

abundance at invaded compared to uninvaded sites. Community composition of non-ant 

invertebrate, Cape Peninsula endemic and non-ant alien invertebrate species are expected to 

differ between uninvaded and invaded sites, with greater similarity between sites where 

Argentine ants are present across habitats, assuming patterns are not confounded by sample 

size or spatial autocorrelation among sites. Co-occurrence patterns of native ant species are 

predicted to be nonrandomly segregated at uninvaded sites, but to show community 

disassembly and a tendency towards random associations at sites where Argentine ants are 

present. Community disassembly is a change from nonrandom to random co-occurrence of 

species that alters community organisation, and has been documented in native ant 

communities as a result of invasion by Argentine ants (Sanders et al., 2003). The impact of 

Argentine ants on native ants is also expected to differ according to functional group, but is 

predicted to be negative for most native ant species. 

By comparison to Argentine ants, the impacts of the vast majority of alien species have 

not yet been quantified (Parker et al., 1999). Nevertheless, it is generally assumed that most 

invasions do have ecological impacts on the invaded ecosystem (Ricciardi & Kipp, 2008), and 

that these impacts span a skewed continuum in which the most adverse impacts are 

comparatively rare, i.e. the upper tail of a log-normal distribution (Williamson & Fitter, 1996). 

Thus the second aim of this study is to profile and investigate the impacts of non-ant alien 

invertebrate species on native ground-dwelling invertebrate species richness, abundance and 
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community composition in Table Mountain National Park. The identification of potentially high-

impact (sensu Ricciardi & Kipp, 2008) alien invaders that may be implicated in substantial 

declines of native invertebrate populations is of scientific interest and urgent conservation 

concern. Habitat alteration, such as afforestation, may also facilitate such invasions. This is 

investigated by contrasting alien invertebrate communities in natural and transformed vegetation 

on the Cape Peninsula. 
 

Methods 

 

Study sites and collecting methods 

Most studies attempting to quantify the impacts of alien species are correlative, either 

comparing one site before and after invasion, or different sites where the alien species is either 

present or absent (Parker et al., 1999). However, few Cape Peninsula locality records exist for 

most of the alien species collected, and many of these records are from many years ago. Hence 

a priori selection of invaded and uninvaded sites was neither possible nor practical. Therefore, 

this study did not adopt either a before-and-after invasion comparison or direct comparison 

across a moving invasion front. Instead, this study compared sites assigned after sampling as 

uninvaded or invaded by Argentine ants (L. humile) and 18 other non-ant alien invertebrates in 

three habitats across one spring-summer season. 

Refer to Chapter 2 for the location of sites sampled and collecting methods used in 

Western Cape Afrotemperate Forest (n = 8 sites), Peninsula Sandstone and Granite Fynbos (n 

= 8 sites) and pine plantation (n = 7 sites; Site 11 omitted) in Table Mountain National Park. For 

each of the 23 sites, data from the replicates (10 leaf litter, 10 soil, 10 pitfall trap, 10 sugar-

baited ant trap and two decayed log samples) were pooled to obtain a single abundance or 

species richness value per site. Refer to Appendix C for a list of the 670 species collected in 

forest, fynbos and pine plantation. 

 

Analyses 

The region of origin, South African distribution, habitats invaded locally and date of first record 

of introduction in South Africa were summarised for all the alien invertebrates identified. Since 

comparatively more is known about Argentine ants than the other alien invertebrates collected, 

the analyses were split into three sections: Argentine ant impacts on native ants, Argentine ant 

impacts on other ground-dwelling invertebrates, and other alien invertebrate species impacts on 

their corresponding native taxa. 
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Analyses for impacts of Argentine ants on native ants 

Species-accumulation curves were plotted for the observed species richness of ants in forest, 

fynbos and pine plantation to ascertain whether assemblages were adequately sampled. 

Species-accumulation curves were calculated using Sobs Mao Tau sample-based rarefaction 

curves, randomised 50 times in EstimateS version 8 (Colwell, 2006). The x-axis of these 

sample-based rarefaction curves was re-scaled from sites sampled to individuals. Observed ant 

species richness counts were re-scaled to obtain abundance-standardised ant species richness, 

using the lowest number of individuals collected at a site. Re-scaling is necessary when curves 

do not reach an asymptote and/or there is overlap in the 95% confidence intervals, because 

individual densities vary among samples and species rich invertebrate communities are 

impractical to sample exhaustively (Gotelli & Colwell, 2001; Colwell et al., 2004). 

Mean (± SD) species richness and abundance of native ants were calculated at sites 

uninvaded and invaded by Argentine ants in STATISTICA version 9 (StatSoft, Inc., 2009). Sites 

were scored as “uninvaded” if Argentine ants were absent and “invaded” if Argentine ants were 

present. Species richness and abundance of native ants in each habitat were compared for 

sites uninvaded and invaded by Argentine ants using Mann-Whitney U tests in STATISTICA. 

Native ant species richness was regressed against Argentine ant abundance at sites in each 

habitat, to test the prediction that native ant species richness is reduced when Argentine ants 

are highly abundant. 

Impacts of Argentine ant invasion on native ant species were investigated by comparing 

the mean (± SD) abundance of each native ant species between uninvaded and invaded sites. 

Impacts were scored by calculating the percentage change in abundance with invasion. Impacts 

were scored as “positive” if there was an increase in mean abundance with invasion, “negative” 

if there was a decrease in mean abundance with invasion, and “0” if an ant species was not 

collected at any site in that habitat. 

A Bray-Curtis dissimilarity matrix of fourth-root transformed community composition 

between sites was used to map the interrelationships of native ant communities in cluster 

analysis by group average clustering, and in ordination by non-metric multidimensional scaling 

(MDS), in PRIMER version 6 (Clarke & Gorley, 2006). Data were fourth-root transformed to 

down-weight highly abundant species. In an MDS plot, the x-axis represents the direction of 

maximum variation, with the position of samples (or sites in this case) reflecting compositional 

similarity. The stress value acts as a measure of reliability, since the risk of drawing false 

inferences from an ordination increases with greater stress. Stress values less than 0.2 are 
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deemed reliable. Clusters on the MDS plot were overlaid from the resemblance levels (i.e. the 

percentage similarity) obtained from the dendrogram plot in PRIMER. 

The same Bray-Curtis dissimilarity matrix of native ant data was used for pairwise 

analysis of similarity (ANOSIM), to test the null hypothesis of no difference in ant community 

composition between sites uninvaded and invaded by Argentine ants in each habitat. ANOSIM 

is the non-parametric, multivariate equivalent of ANOVA, applied to the rank dissimilarity matrix 

using a permutation procedure (999 permutations) (Clarke & Green, 1988). It calculates the R 

statistic, which provides a relative measure of separation of predefined groups, and ranges from 

zero (no difference among groups) to one (all samples within groups are more similar to one 

another than to any samples from another group). ANOSIM was used here to confirm whether 

the cluster pattern identified in the ordination was statistically significant. 

Co-occurrence patterns of native ant species were compared between sites uninvaded 

and invaded by Argentine ants in each habitat, using Stone & Roberts’ (1990) C-score index, 

calculated with EcoSim 7.72 simulation software (Gotelli & Entsminger, 2010). Co-occurrence 

analyses use a presence-absence data matrix to test for nonrandom patterns of species co-

occurrence, based on a null model algorithm (Sanders et al., 2003). In each matrix, rows 

represent species, columns represent sites, and the entries are the presence (1) or absence (0) 

of a species at a site. The C-score index quantifies the average number of “checkerboard units” 

found between all species pairs, where a checkerboard unit is a 2 x 2 submatrix of the form 0 1, 

1 0 or 1 0, 0 1 (Sanders et al., 2003). For each pair of species, the C-score was calculated as 

(Ri – S)(Rj – S), where Ri and Rj are the matrix row totals for species i and j, and S is the number 

of sites where both species occur (Stone & Roberts, 1990). Each observed data matrix was 

randomised 5000 times using a null model, with fixed sums of rows and equiprobable columns, 

to calculate the expected C-score. If a community is structured by competitive species 

interactions, then its C-score should be significantly larger than expected by chance (Gotelli, 

2000; Gotelli & McCabe, 2002). The standardised effect size (SES) was also calculated for each 

matrix, by measuring the number of standard deviations that the observed index is above or 

below the mean simulated (i.e. expected) index (Gotelli & McCabe, 2002). SES values in the 

range of 2.0 to -2.0 approximate the 5% significance level, and may be interpreted as random 

community associations. SES values greater than 2.0 suggest nonrandom segregation, while 

values less than -2.0 suggest nonrandom aggregation in the community. 

Ant functional groups for the genera collected, and their responses to Argentine ants, 

were extracted from the literature. Functional groups were also expressed as a proportion of the 

total number of native species and mean individuals collected in uninvaded and invaded sites in 
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each habitat, to establish whether Argentine ant presence-absence impacted native ant 

assemblages, based on their niche dimensions. Abundance was standardised by site because 

of unequal sample sizes (number of sites). Species richness and abundance of native ants in 

each functional group in each habitat were compared for sites where Argentine ants were 

present and absent using Mann-Whitney U tests in STATISTICA. 

 

Analyses for impacts of Argentine ants on other invertebrates 

Mean (± SD) species richness and abundance of all non-ant invertebrates, Cape Peninsula 

endemics and non-ant alien invertebrates were compared between sites where Argentine ants 

were present (invaded) and absent (uninvaded) in each habitat. Mann-Whitney U tests were 

used to compare the species richness and abundance of all non-ant invertebrates, Cape 

Peninsula endemics and non-ant alien invertebrates between sites uninvaded and invaded by 

Argentine ants in each habitat in STATISTICA. 

Impacts of invasion by Argentine ants on non-ant, Cape Peninsula endemic and other 

alien invertebrates were investigated by comparing the mean (± SD) abundance of each taxon 

(for all invertebrates) or species (for endemics and aliens) between uninvaded and invaded 

sites. Impacts were scored by calculating the percentage change in abundance with invasion. 

Impacts were scored as “positive” if there was an increase in mean abundance with invasion, 

“negative” if there was a decrease in mean abundance with invasion, “neutral” if there was no 

difference in mean abundance with invasion, and “0” if a species was not collected at any site. 

Bray-Curtis dissimilarity matrices of fourth-root transformed community composition 

between sites were used to map the interrelationships of all, endemic and alien invertebrate 

communities in ordination by non-metric multidimensional scaling (MDS), in PRIMER. Pairwise 

analysis of similarity (ANOSIM) was used to test the null hypothesis of no difference in the 

community composition of all, endemic and alien invertebrates with invasion in each habitat. For 

endemics, pine plantation sites were omitted from the MDS ordination and ANOSIM, because 

only one endemic species (Uroplectes insignis) was collected at Sites 2 and 4, and no endemic 

species was collected at the other five pine plantation sites sampled. 

 

Analyses for impacts of other alien species on their corresponding native taxa 

For non-ant alien invertebrates, each alien species was compared to its corresponding native 

taxon only (e.g. Portuguese millipede compared to native millipede species), because impacts 

due to competition or predation (cannibalism in the case of some molluscs) were expected to be 

most evident among taxonomically related species. The impacts of other alien invertebrates, 
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some of which were identified to morphospecies only, were not applied to their corresponding 

functional groups, because of the difficulty in accurately assigning morphospecies to functional 

groups. Sites were scored as “uninvaded” if the alien species in question was absent and 

“invaded” if the alien species was present. Non-parametric analyses were used for all alien 

species collected, because residuals of data were not normally distributed for most alien 

species, and abundance and incidence were generally quite low. 

Spearman rank correlations were calculated for all habitats combined, and for each 

habitat, to establish whether the abundance of each alien species was significantly associated 

with the species richness and abundance of native species from the alien’s associated taxon. 

Mean (± SD) native species richness and abundance were calculated between sites where each 

alien was present and absent in each habitat, and then compared using Mann-Whitney U tests, 

to establish whether observed impacts were statistically significant. Several alien species were 

collected at one site only, so comparisons of mean native species richness and abundance 

were not made for these species. All species richness and abundance comparisons were 

performed in STATISTICA. 

A triangular matrix of Bray-Curtis dissimilarity of fourth-root transformed community 

composition between sites was used to map the interrelationships of invertebrate communities 

for each alien invertebrate species’ corresponding taxon in cluster analysis, using group 

average clustering, and in ordination by non-metric multidimensional scaling (MDS), in PRIMER. 

Sites with no corresponding native species collected in that taxon were omitted. The same 

dissimilarity matrices were used for ANOSIM, to test the null hypothesis of no difference in 

community composition between sites for each alien species presence-absence. ANOSIM was 

applied to the rank similarity matrix using a permutation procedure (999 permutations) to test for 

statistical significance of the cluster patterns identified in the ordinations. 

 

Results 

 

Nineteen alien invertebrate species were collected in forest, fynbos and pine plantation. The 

invasion history and currently known South African distribution of these alien invertebrate 

species were summarised from the literature (Table 4.1). The Argentine ant was the only alien 

species to have originated from the Southern Hemisphere. All alien molluscs identified were 

European in origin, with most species from the Mediterranean region. Most alien mollusc 

species have been established in South Africa for many decades (and some perhaps for 

centuries), and several have distributions beyond the Western Cape Province. The Portuguese 
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millipede, Rough woodlouse, springtails and European wasp all have a Palearctic (mostly 

European) native range, and most have a synanthropically cosmopolitan distribution. The South 

African distribution and habitats invaded by alien invertebrates (other than ants and molluscs) 

have not yet been adequately studied, but distribution maps for some species have recently 

become available (Picker & Griffiths, 2011). 
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Table 4.1. Invasion history of alien invertebrates collected, excluding those lacking positive species-level determinations. 
 

Species Common names Native range 
South African  
distribution 

South African  
habitats invaded 

Date 
introduced 

References
+
 

Linepithema 
humile* 

Argentine ant Paraná River basin 
in subtropical South 
America 

Six of the nine 
provinces 

Agricultural, urban, 
plantation and 
natural areas 

Prior to 
1901 

Prins et al., 1990; Wild, 
2004; Luruli, 2007 

Arion hortensis 
aggregate# 

Garden arion, 
Férussac's orange-
soled slug,  
Yellow-soled slug 

Western Europe Cape Town and 
Stellenbosch 

Exotic pine 
plantations 

Prior to 
1939 

Herbert, 2010 

Deroceras 
panormitanum* 

Brown field slug,  
Long-necked field 
slug 

Probably 
Mediterranean 

Western Cape, 
Eastern Cape and 
Gauteng 

Suburban and rural 
gardens, forest on 
Table Mountain and 
near Somerset East 

Prior to 
1963 

Herbert, 2010 

Lehmannia 
valentiana  

Three-banded 
garden slug, 
Valencia slug 

Iberian Peninsula Western Cape, 
Eastern Cape, 
Northern Cape, 
KwaZulu-Natal and 
Kruger National 
Park 

Suburban and rural 
gardens, and natural 
habitats in Cape 
Town  

Prior to 
1961 

Herbert, 2010 

Limax maximus Giant garden slug, 
Great grey slug, 
Tiger slug, Leopard 
slug, Spotted garden 
slug 

Western and 
Central Europe, 
and perhaps North 
Africa 

Western Cape Cape Town: forest 
near suburbia and on 
Table Mountain  

Prior to 
1898 

Herbert, 2010 

Cochlicopa cf. 
lubricella 

Slender moss snail Holarctic Western Cape, 
Eastern Cape, 
Gauteng and North 
West Province 

Primarily in gardens, 
Kirstenbosch and 
Knysna forest 

Prior to 
1965 

Herbert, 2010 

Vitrea contracta  Milky crystal snail, 
Contracted glass 
snail 

Much of Europe, 
Ukraine, Turkey, 
Caucasia, Middle 
East and North 
Africa 

East facing slopes 
of Table Mountain 
and Cape 
Peninsula 

East-facing slopes on 
Cape Peninsula, and 
probably more widely 
distributed in Cape 
Town and surrounds 

Prior to 
2004, 
probably 
not recent 

Herbert, 2010 

Cornu 
aspersum  

Brown garden snail, 
Common garden 
snail 

Western Europe 
and the 
Mediterranean 

All nine provinces, 
synanthropic and 
not widespread in 
natural habitats 

Most widespread 
alien terrestrial snail 
in South Africa 

Prior to 
1878, 
probably 
much 
earlier 

Herbert, 2010 
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Species Common names Native range 
South African  
distribution 

South African  
habitats invaded 

Date 
introduced 

References
+
 

Lauria 
cylindracea  

Common chrysalis 
snail 

Western Europe 
and the 
Mediterranean 

Cape Town, Cape 
Peninsula and 
Worcester 

Gardens, vineyards 
and exotic conifer 
plantations 

Prior to 
1879 

Herbert, 2010 

Oxychilus 
draparnaudi* 

Draparnaud's glass 
snail, Dark-bodied 
glass snail 

Western Europe 
and the 
Mediterranean 

Western Cape, 
Eastern Cape, 
Northern Cape and 
Gauteng 

Spread into native 
habitats and 
abundant on Table 
Mountain above 
Newlands and 
Kirstenbosch 

Circa 1908,  
or earlier 

Herbert, 2010 

Ommatoiulus 
moreleti 

Portuguese millipede Iberian Peninsula Cape Town and the 
South Western 
Cape 

Gardens, pine 
plantations and 
Afrotemperate forest 

Prior to 
1984, 
probably 
much 
earlier 

Lawrence, 1984;  
Hamer, 1998 

Porcellio 
scaber 

Rough woodlouse South Western 
Europe 

Cape Town, and 
probably 
widespread across 
the country 

Gardens and  
Afrotemperate forest 

Prior to 
1885 

Barnard, 1932;  
Lawrence, 1953;  
Slabber & Chown, 2002 

Entomobrya 
nivalis 

springtail Palearctic  Not adequately 
studied 

Not known Prior to 
1934 

Womersley, 1934;  
Paclt, 1956. 

Neanura 
muscorum 

springtail Palearctic  Not adequately 
studied 

Not known Prior to 
1968 

Coates, 1968 

Tomocerus 
minor 

springtail Palearctic  Not previously 
recorded 

Not previously 
recorded 

Post 1956 Womersley, 1934;  
Paclt, 1956;  
E. Bernard pers. 
comm., 2010 

Vespula 
germanica* 

European wasp, 
German wasp, 
Yellowjacket 

Eurasia and North 
Africa 

Cape Peninsula, 
Stellenbosch, 
Somerset West, to 
Hottentots-Holland 
Mountains 

Afrotemperate forest, 
Fynbos, orchards 
and vineyards  

Prior to 
1970 

Whitehead & Prins, 
1975; Richardson et al., 
1992;  
Tribe & Richardson, 
1994; T. Wossler pers. 
comm., 2010 

+ For further reference to the distribution and date of introduction of many of these species, see Picker & Griffiths (2011) 
* Cannibal or carnivorous species 
#
 Arion hortensis aggregate is a member of an unresolved species complex 
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Argentine ants and native ants 

Seventeen ant species were collected in forest (11 species), fynbos (17) and pine plantation 

(12). Sampling achieved saturation in fynbos, and closely approached saturation in both forest 

and pine plantation (Fig. 4.1a). Re-scaling of the x-axis of sample-based rarefaction curves from 

sites sampled to individuals (Fig. 4.1b) retained fynbos as the habitat with the highest observed 

ant species richness. This pattern held with an abundance-standardised comparison of 13 409 

individuals, based on the lowest total ant abundance, recorded in forest. 
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Figure 4.1. Sample-based rarefaction curves of observed ant species richness in forest, fynbos 

and pine plantation with (a) number of sites sampled and (b) number of individuals. Curves were 

calculated using Sobs Mao Tau and randomised 50 times. The sample-based rarefaction curves 

were re-scaled to number of individuals, because the pine plantation curve did not reach an 

asymptote and the 95% confidence intervals for forest and pine plantation overlapped. 

 

Argentine ants were present at 16 of the 23 sites sampled and in all three habitats. Mean 

native ant species richness was not different under Argentine ant invasion (Fig. 4.2a). Mean (± 

SD) native abundance was slightly, but not significantly, higher in uninvaded sites, due to high 

variance among sites (Fig. 4.2b). None of the habitats differed significantly (Mann Whitney U 

tests, p > 0.05) in native species richness or abundance with Argentine ant invasion. 
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Figure 4.2. Mean (a) species richness and (b) abundance of native ants under Argentine ant 

presence-absence. The number in each bar (a) is the number of sites used in calculations. Error 

bars reflect the (positive) standard deviation associated with means. 

 

No linear relationship was found between Argentine ant abundance and native ant 

species richness in either forest (F1,6 = 0.015, R2 = 0.002, p = 0.908), fynbos (F1,6 = 3.912, R2 = 

0.395, p = 0.953) or pine plantation (F1,5 = 0.991, R2 = 0.165, p = 0.365) (Fig. 4.3). Neither could 

the relationship between Argentine ant abundance and native ant species richness be described 

as unimodal (quadratic) in forest (F2,5 = 0.176, R2 = 0.066, p = 0.844), fynbos (F2,5 = 2.604, R2 = 

0.510, p = 0.168) or pine plantation (F2,4 = 0.134, R2 = 0.720, p = 0.079). None of these 

relationships were significant (p > 0.05), possibly due to the uneven spread in Argentine ant 

abundance, high habitat heterogeneity and low number of sites sampled in each habitat. 

 

 
 

Figure 4.3. Relationship between Argentine ant abundance and native ant species richness. 
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The impacts of Argentine ants on individual native ant species were not consistent 

across habitats and could not be clearly determined (Table 4.2). Several ant species were 

collected from only a few sites. For example, Meranoplus sp. appears to be negatively impacted 

by the presence of Argentine ants in forest and pine plantation, but was in fact collected from 

only one site each in forest and pine plantation, thus refuting the possible negative impact. 

Furthermore, the variance in mean abundance between sites where Argentine ants were 

present and absent was high, most likely reflecting incidental or naturally patchy distributions, 

rather than any consequence of Argentine ant invasion. Sample sizes (i.e. number of sites) may 

also be generally too low to produce statistically meaningful results. Even when a change of 

100% or more was recorded, this was often for only a few individuals and therefore not really 

meaningful for ant species that live in colonies. Impacts in fynbos were particularly difficult to 

identify, because Argentine ants were absent from only one fynbos site sampled. 

 



C. Uys, PhD (February 2012). Chapter 4. Alien invertebrate impacts 

89 
 

Table 4.2. Impacts of invasion by Argentine ants on the mean ± SD abundance of native ant species collected. Impacts were scored 

as “positive” if there was an increase in mean abundance with invasion (presence), “negative” if there was a decrease in mean 

abundance with invasion, and “0” if a species was not collected at any site in that habitat. n = number of sites. % = percentage 

change in abundance with invasion. * = absent in uninvaded. 

 

Native ant species  Forest Fynbos Pine plantation 

 
Absent 
(n = 3) 

Present 
(n = 5) 

Impact % 
Absent 
(n = 1) 

Present 
(n = 7) 

Impact % 
Absent 
(n = 3) 

Present 
 (n = 4) 

Impact % 

Tapinoma sp. 0 0 0  5 107.4 ± 237.8 positive 2048.57 0 66.3 ± 132.5 positive * 

Technomyrmex pallipes 0 0 0  23 186.0 ± 377.6 positive 708.70 0 3.3 ± 6.5 positive * 

Camponotus bertolinii 2.3 ± 3.2 9.4 ± 19.4 positive  302.86 1 52.9 ± 115.2 positive 5158.71 40.0 ± 69.3 7.3 ± 10.7 negative -81.88 

Camponotus niveosetosus 6.0 ± 7.9 3.6 ± 4.5 negative -40.00 126 88.0 ± 162.4 negative  -30.16 1.0 ± 1.0 2.3 ± 3.3 positive 125.00 

Camponotus sp. 1  0 0 0  1 52.9 ± 64.6 positive 5158.71 0 0 0  

Camponotus sp. 2  185.0 ± 251.6 8.0 ± 12.0 negative -95.68 2930 204.3 ± 346.7 negative -93.03 4.0 ± 4.0 27.8 ± 54.8 positive 593.75 

Lepisiota capensis 1.3 ± 1.2 0.2 ± 0.4 negative -85.00 0 1291.4 ± 2876.6 positive * 1.7 ± 1.5 5.0 ± 10.0 positive 200.00 

Crematogaster sp. 233.7 ± 317.4 21.0 ± 45.3 negative -91.01 1630 262.1 ± 442.1 negative -83.92 0 0 0  

Meranoplus sp. 93.7 ± 162.2 0 negative -100.00 0 67.7 ± 96.1 positive * 0 0 0  

Monomorium sp. 616.3 ± 706.9 248.0 ± 196.2 negative -59.76 393 71.1 ± 118.4 negative -81.90 1134.0 ± 665.1 469.0 ± 437.4 negative -58.64 

Myrmicaria nigra 0 0 0  19 37.9 ± 96.3 positive 99.25 0 0 0  

Pheidole capensis 0 0 0  2 220.4 ± 377.7 positive 10921.43 0 0 0  

Tetramorium grassii 517.0 ± 396.2 488.6 ± 790.0 negative -5.49 478 88.7 ± 184.3 negative -81.44 247.7 ± 119.0 236.0 ± 172.2 negative -4.71 

Tetramorium sp.  0 421.8 ± 942.6 positive * 51 38.3 ± 68.8 negative -24.93 41.7 ± 71.3 1.5 ± 1.9 negative -96.40 

Hagensia peringueyi 0 0 0  127 17.9 ± 37.3 negative -85.94 0 0 0  

Tetraponera sp. 2.3 ± 2.5 2.8 ± 5.2 positive 20.00 0 5.3 ± 10.8 positive  * 1.0 ± 1.7 4.5 ± 2.4 positive 350.00 
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Native ant community composition varied between habitats. In an MDS ordination of 

native ant species (Fig. 4.4), sites clustered in two broad groups, with 37% similarity between 

them. One cluster contained all undisturbed Granite and Sandstone Fynbos sites. Site 26 

(Sandstone Fynbos) was spatially separated from other mature fynbos sites, possibly reflecting 

some unknown difference between Tokai (Silvermine Mountain) and Table Mountain. The other 

primary cluster contained both recovering fynbos sites (Sites 3 and 30, previously under pine) 

and all forest and pine plantation sites. Even at 49% similarity (smaller circles on MDS plot), 

there was no clear separation of forest from pine plantation sites, or across a north-south 

spread of localities. Although Site 7 (forest in Kirstenbosch) appeared to be an outlier (spatially 

separated from other forest sites on the MDS plot), it was retained in the analysis, because 

there was no reason to believe that collector bias, adverse weather conditions or other 

confounding variables were responsible for the very low ant abundance and low number of ant 

species collected there. There was no clear separation of sites in any habitat based on the 

presence of Argentine ants. 
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Figure 4.4. Ordination from non-metric multidimensional scaling (MDS), applied to a Bray-Curtis 

dissimilarity matrix of fourth-root transformed community composition amongst sites for native 

ants. Numbers refer to sites (see Appendix A) and symbols to Argentine ant presence-absence 

in each habitat. Large black circles represent 37% similarity among sites, and smaller grey 

circles 49% similarity. 
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ANOSIM confirmed the pattern observed in the ordination (Fig. 4.4). ANOSIM showed 

that the native ant community did not differ significantly between sites uninvaded and invaded 

by Argentine ants within habitats, between invaded sites across habitats, or between uninvaded 

sites across habitats (Table 4.3). Pairwise ANOSIM test results, such as pine invaded versus 

forest uninvaded, that had no direct relevance to the null hypothesis, were omitted. None of 

these omitted ANOSIM results were significant (p < 0.05). 

 

Table 4.3. ANOSIM for native ant community composition at sites uninvaded and invaded by 

Argentine ants in each habitat. Significance set at p < 0.05. 

 

Habitat pairs R p 

Forest invaded vs. Forest uninvaded 0.108 0.304 
Fynbos invaded vs. Fynbos uninvaded -0.197 0.750 
Pine invaded vs. Pine uninvaded -0.074 0.571 
   
Forest invaded vs. Fynbos invaded 0.272 0.054 
Forest invaded vs. Pine invaded -0.106 0.738 
Fynbos invaded vs. Pine invaded 0.172 0.127 
   
Forest uninvaded vs. Fynbos uninvaded 0.111 0.500 
Forest uninvaded vs. Pine uninvaded 0.111 0.300 
Fynbos uninvaded vs. Pine uninvaded 1.000 0.250 

 

There was no evidence for community co-occurrence in forest sites, regardless of 

Argentine ant presence-absence, because the C-scores (absent: 0.417 and present: 0.694) 

were not significantly higher than expected by chance (Table 4.4). Similarly, there was no 

evidence for co-occurrence in pine plantation sites where Argentine ants were absent. At sites 

where Argentine ants were present in fynbos and pine plantation, significant C-scores (fynbos 

present: 1.208 and pine present: 0.178) with standardised effect sizes (SES) below -2.0, 

assuming a normal distribution of standard deviations, were recorded (Table 4.4). This suggests 

nonrandom co-occurrence (aggregation) in the native ant communities in fynbos and pine 

plantation under Argentine ant invasion. 
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Table 4.4. Co-occurrence of native ant species at sites uninvaded and invaded by Argentine 

ants. Observed = observed C-score index, Expected = mean of the simulated C-score indices, 

and SES = standardised effect size. Values in bold are significant (p < 0.05).  

 

C-score Observed  Expected p (observed ≤ expected) p (observed ≥ expected) SES 

Forest     

absent 0.417 0.390 0.626 0.613 0.340 

present 0.694 0.856 0.200 0.841 -0.879 

Fynbos     

absent *     

present 1.208 2.490 0.000 1.000 -6.700 

Pine plantation     

absent 0.444 0.010 0.751 0.366 0.563 

present 0.178 0.454 0.023 0.990 -2.652 

*Omitted because Argentine ants were absent at only one site in fynbos 

 

The 17 ant species (in 13 genera) collected were divided among seven functional groups 

and vary in their known responses to Argentine ants (Table 4.5). The proportions of species in 

each functional group differed with Argentine ant presence-absence in each habitat (Fig. 4.5a). 

For Generalized Myrmicinae and Subordinate Camponotini, the same number of species was 

recorded between sites where Argentine ants were present and absent in each habitat. 

Opportunists had fewer species at sites where Argentine ants were absent in each habitat. 

Climate Specialists (Hot Climate Specialists and Tropical Climate Specialists) had more species 

at sites where Argentine ants were absent in both forest and pine plantation. Fynbos was 

notably the only habitat to support the Specialist Predators functional group, represented by 

Hagensia, with the single species recorded irrespective of Argentine ant presence-absence. 

Fynbos also supported all other functional groups and native ant species. Species richness of 

native ants in each habitat did not differ significantly (Mann-Whitney U tests, p > 0.05) with 

Argentine ant presence-absence in any functional group. 

The proportions of mean number of individuals in each ant functional group differed with 

Argentine ant presence-absence in each habitat (Fig. 4.5b). Mean abundance of Generalized 

Myrmicinae and Subordinate Camponotini was greater at sites where Argentine ants were 

absent in all habitats. Mean abundance of Specialist Predators was also greater at sites where 

Argentine ants were absent in fynbos. Opportunists had more individuals on average at sites 

where Argentine ants were present in each habitat. Climate Specialists (Hot Climate Specialists 
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and Tropical Climate Specialists) had higher mean abundance with Argentine absence in forest, 

but with Argentine ant presence in fynbos and pine plantation. Abundance of native ants in each 

habitat did not differ significantly (p > 0.05) with Argentine ant presence-absence in any 

functional group. 

 

Table 4.5. Ant functional groups and their response to the Argentine ant (Linepithema humile), 

based on supporting literature. Functional groups (Andersen, 1997a): DD = Dominant 

Dolichoderinae, GM = Generalized Myrmicinae, OPP = Opportunists, SC = Subordinate 

Camponotini, SP = Specialist Predators, HCS = Hot Climate Specialists and TCS = Tropical 

Climate Specialists. 

 

Genus 
Foraging 
habits 

Functional 
group 

Competitive response 
(at the generic level) 

References  

Dolichoderinae     

Linepithema mostly 
epigaeic 

DD Abundant, active and aggressive. Strong 
competitive influence over other ants. 

Andersen, 1997a 

Tapinoma epigaeic OPP Subordinate behaviour. Majer et al., 2004 

Technomyrmex epigaeic OPP Subordinate behaviour. Majer et al., 2004 

Formicinae     

Camponotus epigaeic SC Behaviourally submissive to L. humile. Hoffmann & 
Andersen, 2003 

Lepisiota epigaeic OPP May be able to resist invasions by L. 
humile. 

Edge et al., 2008 

Myrmicinae     

Crematogaster arboreal GM Forage on tree trunks, so little direct 
interaction with L. humile. 

Brown, 2000 

Meranoplus epigaeic HCS Occurs where L. humile is not dominant. Andersen, 2000 

Monomorium epigaeic GM Chemical secretions used to repel attacks 
by L. humile. 

Holway, 1999 

Myrmicaria epigaeic GM In habitats with low abundance of L. humile.  Majer et al., 2004 

Pheidole epigaeic GM Similar resource requirements to L. humile. Christian, 2001 

Tetramorium epigaeic OPP Coexist with L. humile. Opportunist and 
defend nest entrances against attack. 

Hoffmann & 
Andersen, 2003 

Ponerinae     

Hagensia epigaeic SP Specialist diet, large body size and small 
colony. Little interaction with other ants. 

Andersen, 1997a 

Pseudomyrmicinae    

Tetraponera arboreal TCS Occurs where DD generally not abundant. Andersen, 1997a 
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Figure 4.5. Functional groups expressed (a) as a proportion of the total number of native ant 

species and (b) as a proportion of the mean number of native ant individuals collected at sites 

where Argentine ants were present and absent in each habitat. Number of sites in parentheses. 

Functional groups: GM = Generalized Myrmicinae, OPP = Opportunists, SC = Subordinate 

Camponotini, SP = Specialist Predators, HCS = Hot Climate Specialists and TCS = Tropical 

Climate Specialists. 
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Argentine ants and other invertebrates 

In total, 21 866 individuals from 653 non-ant invertebrate species were collected at the 23 sites 

sampled. Of these, 7276 individuals (1039.5 ± 480.1 individuals per site) and 564 species were 

collected at sites where Argentine ants were absent. By comparison, 14 590 individuals (911.9 ± 

611.9) and 400 species were collected at sites where Argentine ants were present. Mean 

species richness and abundance differed across habitats. Mean (± SD) species richness (Fig. 

4.6a) and abundance (Fig. 4.6b) of all non-ant invertebrates were not clearly or consistently 

lower when Argentine ants were present. Contrary to prediction, mean abundance of other 

invertebrates was slightly higher in both forest and fynbos sites where Argentine ants were 

present (Fig. 4.6b), but not so in pine plantation sites. For Cape Peninsula endemic 

invertebrates, mean (± SD) species richness (Fig. 4.6c) and abundance (Fig. 4.6d) were slightly 

higher in both forest and fynbos sites where Argentine ants were present, again contrary to 

prediction. For other alien invertebrates, mean (± SD) species richness (Fig. 4.6e) and 

abundance (Fig. 4.6f) were slightly higher in both forest and fynbos sites where Argentine ants 

were present, as predicted, but not so in pine plantation. Species richness and abundance of all 

non-ant invertebrates, Cape Peninsula endemic invertebrates and non-ant alien invertebrates 

did not differ significantly (Mann-Whitney U tests, p > 0.05) with Argentine ant presence-

absence between sites in each habitat. This may be attributed to the low number of sites 

sampled in each habitat and high variance among sites. 
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Figure 4.6. Mean species richness and abundance of (a and b) non-ant invertebrates, (c and d) 

Cape Peninsula endemics and (e and f) other alien invertebrates at sites where Argentine ants 

were absent (uninvaded) and present (invaded). Error bars reflect the (positive) standard 

deviation associated with means. 

 

The impact of Argentine ants on non-ant invertebrates differed among the 32 

invertebrate taxa collected and across habitats (Table 4.6). A few more positive (n = 16) than 

negative (n = 11) impacts were observed in forest. Similarly, more positive (n = 21) than 

negative (n = 8) impacts were observed in fynbos. However, fewer positive (n = 10) than 

negative (n = 18) impacts were observed in pine plantation. Soft-bodied taxa (velvet worms, 

flatworms, earthworms, slugs, snails and springtails) did not show a consistent trend of more 

negative impacts of Argentine ants across habitats, and did not have lower mean abundance in 
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the habitats where Argentine ants were most common. Centipedes and millipedes both showed 

positive impacts in forest and negative impacts in pine plantation, but opposite impacts in 

fynbos. Crustaceans were either absent or showed a positive impact of Argentine ants. 

Arachnids showed more positive than negative associations in all habitats. For insects, impacts 

varied among orders and habitats, with a similar split in forest and slightly more positive impacts 

in fynbos, but far more negative impacts in pine plantation. For beetles, bugs, cockroaches, 

crickets, earwigs, flies, psocids and wasps, there was an equal spilt in the number of positive 

and negative impacts in forest, but more positive impacts in fynbos and more negative impacts 

in pine plantation. The remaining insect orders were collected in low numbers, and represented 

by only one or two species, often reflecting incidental catches. 

The impacts of Argentine ants on Cape Peninsula endemic invertebrates differed among 

species and across habitats, with more positive than negative impacts recorded (Table 4.7). 

Habitat specialists, such as the two cockroach species (Dipteretrum brinckae and 

Hoplophoropyga unicolor) restricted to fynbos and the dung beetle species (Bohepilissus 

nitidus) restricted to forest, were not clearly negatively impacted by Argentine ant invasion. 

The impacts of Argentine ants on non-ant alien invertebrates also differed among 

species and across habitats, with more positive than negative impacts observed in forest and 

pine plantation, and only positive impacts recorded in fynbos (Table 4.8). The associations of 

the three widespread, abundant alien slug species (Arion hortensis aggregate, Deroceras 

panormitanum and Lehmannia valentiana) with Argentine ants were mostly positive in forest, all 

positive in fynbos, but all negative in pine plantation. For alien snails, the impacts of Argentine 

ants were mostly positive. Portuguese millipedes (Ommatoiulus moreleti) were negatively 

associated with Argentine ant presence in forest and pine plantation, but positively in fynbos. 

Rough woodlice (Porcellio scaber) and European wasps (Vespula germanica) were positively 

associated with Argentine ant presence across habitats. Springtails were either absent, not 

associated or positively associated with Argentine ant presence across habitats. 
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Table 4.6. Impacts of invasion by Argentine ants on the mean ± SD abundance of other invertebrate taxa. Impacts were scored as 

“positive” if there was an increase in mean abundance with invasion, “negative” if there was a decrease in mean abundance with 

invasion, and “0” if a species was not collected at any site in that habitat. n = number of sites. % = percentage change in abundance 

with invasion. * = absent in uninvaded. 

 

Common name Forest Fynbos Pine plantation 

 Absent Present 
Impact % 

Absent Present 
Impact % 

Absent Present 
Impact % 

  (n = 3) (n = 5) (n = 1) (n = 7) (n = 3)  (n = 4) 

Bees 0 0 0  0 0.7 ± 1.1 positive * 0 0 0  

Beetles 138.3 ± 55.3 197.2 ± 59.0 positive 42.55 32 163.1 ± 292.1 positive 409.82 270.0 ± 200.2 102.8 ± 35.4 negative -61.94 

Bristletails 3.7 ± 1.2 31.2 ± 50.9 positive 750.91 4 2.6 ± 4.8 negative -35.71 1.7 ± 2.1 0.5 ± 0.6 negative -70.00 

Bugs 68.0 ± 17.1 50.0 ± 28.1 negative -26.47 10 16.1 ± 7.1 positive 61.43 97.0 ± 52.7 138.0 ± 149.0 positive 42.27 

Centipedes 14.3 ± 8.5 18.2 ± 11.9 positive 26.98 12 4.0 ± 4.2 negative -66.67 14.7 ± 14.7 7.5 ± 4.8 negative -48.86 

Cockroaches 24.7 ± 34.1 9.6 ± 5.5 negative -61.08 43 50.6 ± 30.9 positive 17.61 1.0 ± 1.0 5.3 ± 3.9 positive 425.00 

Crickets 18.0 ± 14.1 20.0 ± 25.0 positive 11.11 17 73.6 ± 67.7 positive 332.77 45.0 ± 70.2 38.8 ± 38.9 negative -13.89 

Earthworms 115.7 ± 85.5 153.2 ± 110.5 positive 32.45 5 10.0 ± 9.8 positive 100.00 20.3 ± 9.5 50.5 ± 84.1 positive 148.36 

Earwigs 11.3 ± 13.1 20.2 ± 17.3 positive 78.24 2 0.4 ± 1.1 negative -78.57 16.3 ± 0.6 3.8 ± 3.1 negative -77.04 

Flatworms 0 0 0  0 0.6 ± 1.1 positive * 0 0 0  

Flies 10.7 ± 15.0 0.4 ± 0.9 negative -96.25 2 0.4 ± 0.8 negative -78.57 4.3 ± 3.8 2.3 ± 2.2 negative -48.08 

Harvestmen 79.3 ± 43.0 95.2 ± 54.7 positive 20.00 19 87.3 ± 102.6 positive 359.40 155.7 ± 116.6 47.8 ± 16.6 negative -69.33 

Lacewings 89.7 ± 49.2 108.4 ± 68.8 positive 20.89 16 4.9 ± 5.2 negative -69.64 27.7 ± 10.1 4.5 ± 2.4 negative -83.73 

Landhoppers 0 0 0  0 0 0  0 0.3 ± 0.5 positive * 

Millipedes 232.0 ± 230.1 184.6 ± 168.3 negative -20.43 3 23.6 ± 31.1 positive 685.71 44.7 ± 33.7 25.3 ± 10.2 negative -43.47 

Mites  119.3 ± 60.6 98.8 ± 65.3 negative -17.21 10 22.7 ± 27.0 positive 127.14 102.3 ± 46.8 85.5 ± 69.0 negative -16.45 

Moths 60.0 ± 13.1 35.8 ± 15.2 negative -40.33 61 26.9 ± 29.4 negative -55.97 74.7 ± 43.8 37.5 ± 12.9 negative -49.78 

Praying mantids 13.0 ± 9.0 22.4 ± 13.0 positive 72.31 5 1.3 ± 2.1 negative -74.29 1.3 ± 2.3 1.0 ± 1.4 negative -25.00 
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Pseudoscorpions 0 0.2 ± 0.4 positive * 0 0.6 ± 0.8 positive * 0 0.3 ± 0.5 positive * 

Psocids/barklice 2.7 ± 2.1 4.0 ± 4.2 positive 50.00 0 2.0 ± 2.9 positive * 1.7 ± 1.5 0.8 ± 1.5 negative -55.00 

Scorpions 3.7 ± 2.1 7.2 ± 3.1 positive 96.36 3 2.1 ± 3.1 negative -28.57 6.3 ± 5.7 9.0 ± 5.2 positive 42.11 

Silverfish 2.3 ± 1.5 0.4 ± 0.9 negative -82.86 0 3.1 ± 2.1 positive * 1.3 ± 2.3 0.8 ± 1.0 negative -43.75 

Slugs 23.0 ± 7.0 19.4 ± 9.6 negative -15.65 1 5.1 ± 4.4 positive 414.29 43.0 ± 33.8 7.0 ± 6.8 negative -83.72 

Snails 22.0 ± 14.0 92.2 ± 45.3 positive 319.09 0 7.7 ± 7.6 positive * 7.7 ± 0.6 17.0 ± 19.9 positive 121.74 

Spiders 25.7 ± 5.0 27.6 ± 8.1 positive 7.53 23 36.7 ± 10.9 positive 59.63 17.0 ± 7.8 21.8 ± 11.7 positive 27.94 

Springtails 107.0 ± 131.4 241.4 ± 395.3 positive 125.61 11 15.7 ± 7.6 positive 42.86 84.7 ± 81.0 47.5 ± 38.8 negative -43.90 

Stick insects 0 0 0  0 1.9 ± 3.7 positive * 0.3 ± 0.6 0 negative -100.00 

Sun-spiders 0 0 0  0 1.0 ± 1.8 positive * 0 0 0  

Thrips 0.3 ± 0.6 0.2 ± 0.4 negative -40.00 0 0 0  0 0 0  

Velvet worms 1.3 ± 1.5 0.4 ± 0.9 negative -70.00 0 0 0  0 0.5 ± 1.0 positive * 

Wasps 53.3 ± 51.0 44.0 ± 29.4 negative -17.50 6 11.3 ± 8.0 positive 88.10 39.0 ± 18.1 38.0 ± 48.8 negative -2.56 

Woodlice 12.3 ± 4.9 29.2 ± 32.8 positive 136.76 2 23.9 ± 52.7 positive 1092.86 0.3 ± 0.6 15.0 ± 25.4 positive 4400.00 
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Table 4.7. Impacts of invasion by Argentine ants on the mean ± SD abundance of Cape Peninsula endemic species. Impacts were 

scored as “positive” if there was an increase in mean abundance with invasion, “negative” if there was a decrease in mean 

abundance with invasion, “neutral” if there was no difference in mean abundance with invasion, and “0” if a species was not collected 

at any site in that habitat. n = number of sites. % = percentage change in abundance with invasion. * = absent in uninvaded. 

 

Endemic species  Forest Fynbos Pine plantation 

 
Absent Present 

Impact % 
Absent Present 

Impact % 
Absent Present 

Impact % 
(n = 3) (n = 5) (n = 1) (n = 7) (n = 3)  (n = 4) 

Trachycystis perplicata 0.3 ± 0.6 1.0 ± 1.7 positive 200.00 0 0 0  0 0 0  

Spermophora gordimerae 0 1.2 ± 2.2 positive * 0 0.4 ± 0.8 positive * 0 0 0  

Spermophora peninsulae 0 0.2 ± 0.4 positive * 0 0 0  0 0 0  

Malaika longipes 1.0 ± 1.0  2.2 ± 1.8 positive 120.00 2 0 negative -100.00 0 0 0  

Moggridgea teresae 1.0 ± 1.0 1.0 ± 1.2 neutral 0.00 0 0.1 ± 0.4 positive * 0 0 0  

Uroplectes insignis 2.3 ± 1.5 0.4 ± 0.9 positive -82.86 0 1.9 ± 2.5 positive * 1.3 ± 2.3 0.5 ± 1.0 negative -62.50 

Dipteretrum brinckae  0 0 0  7 6.6 ± 14.0 negative -6.12 0 0 0  

Hoplophoropyga unicolor 0 0 0  0 4.6 ± 5.4 positive * 0 0 0  

Bohepilissus nitidus 4.7 ± 4.5 20.2 ± 33.0 positive 332.86 0 0 0   0 0 0   
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Table 4.8. Impacts of invasion by Argentine ants on the mean ± SD abundance of other alien species. Impacts were scored as 

“positive” if there was an increase in mean abundance with invasion, “negative” if there was a decrease in mean abundance with 

invasion, “neutral” if there was no difference in mean abundance with invasion, and “0” if a species was not collected at any site in 

that habitat. n = number of sites. % = percentage change in abundance with invasion. * = absent in uninvaded. 

 

Alien species  Forest Fynbos Pine plantation 

 
Absent Present 

Impact % 
Absent Present 

Impact % 
Absent Present 

Impact % 
(n = 3) (n = 5) (n = 1) (n = 7) (n = 3)  (n = 4) 

Arion hortensis complex 11.7 ± 8.3 14.2 ± 8.8 positive 21.71 1 4.0 ± 3.8 positive 300.00 30.5 7.0 ± 6.8 negative -79.61 

Deroceras panormitanum 6.3 ± 9.2 2.2 ± 1.8 negative -65.26 0 0.6 ± 1.1 positive * 1.0 ± 1.7 0 negative -100.00 

Lehmannia valentiana 5.0 ± 3.6 2.6 ± 2.6 negative -48.00 0 0.6 ± 1.5 positive * 7.7 ± 7.1 0 negative -100.00 

Limax maximus 0 0.4 ± 0.9 positive * 0 0 0  0 0 0  

Cochlicopa sp. 0 3.2 ± 7.2 positive * 0 0 0  0 0 0  

Cochlicopa cf. lubricella 0 11.2 ± 25.0 positive * 0 0 0  0 0.8 ± 1.0 positive * 

Vitrea contracta 2.7 ± 4.6 1.0 ± 2.2 negative -62.50 0 0 0  0.7 ± 1.2 4.3 ± 7.2 positive 537.50 

Cornu aspersum 0.3 ± 0.6 1.0 ± 1.7 positive 200.00 0 0 0  0 0 0  

cf. Punctum sp. 0 7.0 ± 15.7 positive * 0 0 0  5.7 ± 3.2 5.3 ± 7.4 negative -7.35 

Lauria cylindracea 0 0 0  0 0 0  0 0.3 ± 0.5 positive * 

Oxychilus draparnaudi 0 12.0 ± 24.0 positive * 0 0.3 ± 0.8 positive * 0 3.3 ± 6.5 positive * 

Oxychilus sp.  0 1.8 ± 3.0 positive * 0 1.4 ± 3.4 positive * 0 2.5 ± 4.4 positive * 

Ommatoiulus moreleti 83.7 ± 33.3 51.4 ± 34.0 negative -38.57 10 20.3 ± 27.3 positive  87.3 ± 33.0 71.0 ± 51.0 negative -18.70 

Porcellio scaber 2.0 ± 1.0 8.6 ± 13.7 positive 330.00 0 14.1 ± 28.9 positive * 0.3 ± 0.6 1.8 ± 2.0 positive 425.00 

Entomobrya nivalis 0 0 0  0 0 0 102.86 5.3 ± 9.2 0 negative -100.00 

Neanura muscorum 0 0.2 ± 0.4 positive * 0 0.6 ± 1.5 positive * 0.3 ± 0.6 0.3 ± 0.5 neutral -25.00 

Tomocerus minor 0 0 0  0 0.1 ± 0.4 positive * 0 0 0  

Vespula germanica 1.3 ± 2.3 2.2 ± 4.4 positive 65.00 0 2.0 ± 3.5 positive * 0.3 ± 0.6 0.5 ± 1.0 positive 50.00 
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The community composition of all other non-ant invertebrates differed between habitats, 

with sites clustering according to habitat, irrespective of Argentine ant presence-absence (Fig. 

4.7a). All forest and pine plantation sites clustered together, separately from fynbos sites, with 

only 30.7% similarity among habitat clusters. Pine plantation and forest sites could be further 

separated with 35.1% similarity between them (not shown on MDS plot). Although there 

appears to be some separation of uninvaded and invaded sites in pine plantation and forest, this 

was not supported by the dendrogram clustering pattern. Sites 6 and 8, the two Granite Fynbos 

sites, clustered separately from all other sites. Recovering Sandstone Fynbos (Sites 3 and 30) 

clustered amongst the other Sandstone Fynbos sites, and not with pine plantation sites. 

The community composition of Cape Peninsula endemic invertebrates differed between 

forest and fynbos, and among fynbos types, but was not determined by Argentine ant presence-

absence (Fig. 4.7b). Sites clustered broadly into forest and fynbos, with 29.6% similarity 

between these two groups (not shown on MDS). Sites could be further divided based on their 

vegetation type and disturbance history, with 44.9% similarity among clusters (grouping shown 

in Fig. 4.7b). Granite Fynbos (Sites 6 and 8) clustered separately from Sandstone Fynbos (Sites 

10, 14, 17 and 26) and recovering fynbos (Sites 3 and 30). 

The community composition of non-ant alien invertebrates was not clearly determined by 

either habitat or Argentine ant presence-absence (Fig. 4.7c). At 41.5% similarity between 

clusters (grouping shown in Fig. 4.7c), site clusters overlapped and no meaningful grouping was 

detected in the dendrogram. The stress value was high (0.19), implying that these patterns may 

not be reliable, with a risk of drawing false inferences if followed. 
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Figure 4.7. MDS ordination applied to Bray-Curtis dissimilarity matrices of fourth-root 

transformed data of community composition amongst sites where Argentine ants were present 

(invaded) and absent (uninvaded) for (a) all non-ant invertebrates, (b) Cape Peninsula endemic 

invertebrates and (c) non-ant alien invertebrates. For Cape Peninsula endemic invertebrates, 

pine plantation sites were excluded because endemics were mostly absent in pine plantation. 

 

Pairwise ANOSIM test results, such as pine invaded versus forest uninvaded, that had 

no direct relevance to the null hypothesis, were omitted from all analyses of Argentine ant 

invasion impacts on the community composition of non-ant invertebrates. ANOSIM for all non-

ant invertebrates confirmed that habitat (vegetation type) had a stronger influence on 

community composition than Argentine ant presence-absence (Table 4.9). No significant 

difference in community composition of non-ant invertebrates between sites uninvaded and 

invaded by Argentine ants was found within forest, fynbos or pine plantation. However, there 

were significant differences between pairwise combinations of habitats for invaded sites: forest 

invaded vs. fynbos invaded (R = 0.672, p = 0.003), and forest invaded vs. pine invaded (R = 

0.867, p = 0.018) (Table 4.9). These results confirm the pattern observed in the MDS ordination 

(Fig. 4.7a) of sites being separated by habitat and not by Argentine ant presence-absence. 
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Similarly, ANOSIM for Cape Peninsula endemic invertebrate species showed that the 

community composition of sites where Argentine ants were present differed significantly 

between forest and fynbos (R = 0.740, p = 0.001) (Table 4.9). Argentine ant invasion did not 

significantly alter the community composition of endemic species within habitats. These results 

confirm the pattern observed in the MDS ordination (Fig. 4.7b) of sites separated by habitat and 

not by Argentine ant presence-absence. 

ANOSIM for other alien invertebrates showed no difference in community composition 

between sites where Argentine ants were present and absent, either within or between habitats 

(Table 4.9). This explained the lack of detectable pattern in the MDS ordination (Fig. 4.7c), in 

which clusters overlapped and were not clearly defined either by habitat or Argentine ant 

presence-absence. 

 

Table 4.9. ANOSIM results for the community composition of all other non-ant, Cape Peninsula 

endemic, and non-ant alien invertebrates at sites where Argentine ants were present (invaded) 

and absent (uninvaded). Values in bold are significant (p < 0.05). 

 

Habitat pairs 
All non-ants Endemics Aliens 

R p R p R p 

Forest invaded vs. Forest uninvaded -0.200 0.857 -0.056 0.589 -0.251 0.982 

Fynbos invaded vs. Fynbos uninvaded -0.102 0.750 0.252 0.250 -0.034 0.750 

Pine invaded vs. Pine uninvaded 0.037 0.571 *  -0.204 0.857 

       

Forest invaded vs. Fynbos invaded 0.672 0.003 0.740 0.001 0.209 0.085 

Forest invaded vs. Pine invaded 0.867 0.018 *  0.119 0.254 

Fynbos invaded vs. Pine invaded 0.328 0.048 *  0.212 0.094 

       

Forest uninvaded vs. Fynbos uninvaded 1.000 0.250 0.556 0.500 1.000 0.250 

Forest uninvaded vs. Pine uninvaded 0.963 0.100 *  0.370 0.200 

Fynbos uninvaded vs. Pine uninvaded 1.000 0.250 *  1.000 0.250 

*Comparisons with pine omitted, because endemic species were mostly absent in pine plantation. 
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Other alien invertebrates 

Eighteen non-ant alien invertebrate species were collected in forest, fynbos and pine plantation. 

The native invertebrate assemblage, against which the impacts of these alien taxa were 

compared, consisted of eight mollusc, nine millipede, six woodlice, 16 springtail and 107 wasp 

species. Across habitats, there was no correlation between the abundance of most alien 

invertebrate species and either the species richness (Table 4.10) or abundance (Table 4.11) of 

native species in each alien’s corresponding taxon. Significant, positive Spearman rank 

correlations between alien abundance and equivalent native species richness in all habitats 

combined were found for Deroceras panormitanum, Ommatoiulus moreleti and Neanura 

muscorum (Table 4.10). Significant, positive correlations between alien and equivalent native 

taxa abundances in all habitats combined were found for D. panormitanum, Cornu aspersum, O. 

moreleti and Vespula germanica (Table 4.11). In forest, wasp species richness was significantly 

positively correlated with V. germanica abundance (Table 4.10), and snail abundance was 

significantly positively correlated with Vitrea contracta abundance (Table 4.11). In fynbos, snail 

species richness was significantly positively correlated with D. panormitanum abundance (Table 

4.10). In pine plantation, millipede species richness and abundance were significantly positively 

correlated with O. moreleti abundance, and wasp abundance was significantly correlated with V. 

germanica abundance. Both native snail species richness (Table 4.10) and abundance (Table 

4.11) were negatively (although not significantly) correlated with the abundance of the 

carnivorous alien snail Oxychilus draparnaudi. 

Mean ± SD species richness of native invertebrates in the taxon to which each alien 

belongs was generally higher at sites where the alien species did not occur (Table 4.12). This 

association of native species with an alien species was only statistically significant for D. 

panormitanum (Mann-Whitney U test: Z = 3.939, p < 0.001) and N. muscorum (Z = -2.433, p = 

0.009) across habitats. Mean ± SD abundance of taxonomic equivalent native invertebrates was 

also generally higher at sites where the alien species was absent, but again variable amongst 

species and habitats (Table 4.13). This association of native abundance with the presence of an 

alien species was only statistically significant for D. panormitanum (Z = 3.631, p < 0.001), C. 

aspersum (Z = 2.100, p = 0.026) and V. germanica (Z = -2.741, p = 0.004) across habitats. 
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Table 4.10. Spearman rank correlations between the abundance of each alien invertebrate species collected and the species 

richness of native species from the corresponding taxon to which the alien belongs. Values in bold are significant (p < 0.05). 

 

Alien 
Corresponding 

Taxon 

All habitats  Forest Fynbos Pine  

R p R p R p R p 

Arion hortensis aggregate Snails 0.319 0.137 -0.236 0.573 0.619 0.102 0.316 0.446 
Deroceras panormitanum Snails 0.866 <0.001 0.326 0.431 0.761 0.028 0.667 0.071 
Lehmannia valentiana Snails 0.159 0.470 -0.481 0.227 -0.354 0.390 -0.016 0.970 
Limax maximus Snails 0.050 0.822 -0.514 0.193 * * * * 
Cochlicopa sp. Snails 0.348 0.104 0.514 0.193 * * * * 
Cochlicopa cf. lubricella Snails 0.051 0.816 0.514 0.193 * * 0.135 0.750 
Vitrea contracta Snails 0.156 0.476 0.776 0.023 * * 0.206 0.624 
Cornu aspersum Snails 0.332 0.122 -0.221 0.599 * * * * 
cf. Punctum sp. Snails -0.239 0.271 -0.514 0.193 * * 0.498 0.209 
Lauria cylindracea Snails -0.066 0.764 * * * * 0.381 0.352 
Oxychilus draparnaudi Snails 0.023 0.916 -0.226 0.590 -0.354 0.390 -0.432 0.285 
Oxychilus sp.  Snails -0.264 0.224 -0.421 0.299 -0.535 0.172 -0.571 0.139 
Ommatoiulus moreleti Millipedes 0.536 0.008 0.159 0.708 0.201 0.632 0.712 0.048 

Porcellio scaber Woodlice 0.261 0.230 0.085 0.841 0.276 0.508 0.201 0.633 
Entomobrya nivalis Springtails 0.365 0.087 * * * * 0.607 0.111 
Neanura muscorum Springtails 0.545 0.007 0.514 0.193 1 0.105 0.475 0.234 
Tomocerus minor Springtails 0.083 0.707 * * 0.176 0.677 * * 
Vespula germanica Wasps 0.388 0.068 0.607 0.110 0.383 0.349 0.201 0.634 

* Alien species not collected in that habitat
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Table 4.11. Spearman rank correlations between the abundance of each alien invertebrate species collected and the abundance of 

native species from the corresponding taxon to which the alien belongs. Values in bold are significant (p < 0.05). 

 

Alien 
Corresponding  

taxon 

All habitats  Forest Fynbos Pine  

R p R p R p R p 

Arion hortensis aggregate Snails 0.317 0.141 -0.467 0.243 0.484 0.224 0.454 0.259 
Deroceras panormitanum Snails 0.768 <0.001 0.218 0.604 0.697 0.054 0.286 0.493 
Lehmannia valentiana Snails 0.232 0.286 -0.217 0.606 -0.351 0.393 0.142 0.738 
Limax maximus Snails 0.115 0.601 -0.412 0.310 * * * * 
Cochlicopa sp. Snails 0.214 0.327 -0.082 0.846 * * * * 
Cochlicopa cf. lubricella Snails -0.016 0.944 -0.082 0.846 * * 0.297 0.475 
Vitrea contracta Snails 0.022 0.919 -0.265 0.526 * * 0.429 0.289 
Cornu aspersum Snails 0.475 0.022 0.385 0.346 * * * * 
cf. Punctum sp. Snails -0.302 0.162 -0.412 0.310 * * 0.498 0.209 
Lauria cylindracea Snails -0.033 0.882 * * * * 0.571 0.139 
Oxychilus draparnaudi Snails 0.072 0.744 -0.109 0.797 -0.351 0.393 -0.432 0.285 
Oxychilus sp.  Snails -0.156 0.478 0.069 0.872 -0.531 0.175 -0.571 0.139 
Ommatoiulus moreleti Millipedes 0.655 <0.001 0.371 0.365 0.043 0.919 0.826 0.011 

Porcellio scaber Woodlice 0.328 0.127 0.530 0.176 0.416 0.306 0.291 0.485 
Entomobrya nivalis Springtails 0.289 0.180 * * * * 0.577 0.134 
Neanura muscorum Springtails 0.239 0.272 0.577 0.134 0 0.615 0.312 0.452 
Tomocerus minor Springtails -0.225 0.302 * * -0.249 0.552 * * 
Vespula germanica Wasps 0.554 0.006 0.768 0.026 0.659 0.076 0.764 0.027 

* Alien species not collected in that habitat 
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Table 4.12. Mean native taxon species richness compared between sites where alien species were present and absent in each 

habitat. Values in parentheses refer to the number of sites. 

 

Alien species 

Forest Fynbos Pine plantation 

Mean ± SD (sites) Mean ± SD (sites) Mean ± SD (sites) 

present absent present absent present absent 

Arion hortensis complex 3.4 ± 1.2 (8) (0) 1.1 ± 1.2 (7) 0 (1) 0.8 ± 1.2 (6) 0 (1) 

Deroceras panormitanum 3.4 ± 1.2 (8) (0) 2.5 ± 0.7 (2) 0.5 ± 0.8 (6) 3 (1) 0.3 ± 0.5 (6) 

Lehmannia valentiana 3.2 ± 1.2 (6) 4.0 ± 1.4 (2) 0 (1) 1.1 ± 1.2 (7) 0.5 ± 0.7 (2) 0.8 ± 1.3 (5) 

Limax maximus 2 (1) 3.6 ± 1.1 (7) (0) 1.0 ± 1.2 (8) (0) 0.7 ± 1.1  (7) 

Cochlicopa sp. 5 (1) 3.1 ± 1.1 (7) (0) 1.0 ± 1.2 (8) (0) 0.7 ± 1.1  (7) 

Cochlicopa cf. lubricella 5 (1) 3.1 ± 1.1 (7) (0) 1.0 ± 1.2 (8) 0.5 ± 0.7 (2) 0.8 ± 1.3 (5) 

Vitrea contracta 5.0 ± 0 (2) 2.8 ± 0.8 (6) (0) 1.0 ± 1.2 (8) 0.7 ± 0.6 (3) 0.8 ± 1.5 (4) 

Cornu aspersum 3.0 ± 1.0 (3) 3.6 ± 1.3 (5) (0) 1.0 ± 1.2 (8) (0) 0.7 ± 1.1  (7) 

cf. Punctum sp. 2 (1) 3.6 ± 1.1 (7) (0) 1.0 ± 1.2 (8) 0.8 ± 1.2 (6) 0 (1) 

Lauria cylindracea (0) 3.4 ± 1.2 (8) (0) 1.0 ± 1.2 (8) 1 (1) 0.7 ± 1.2 (6) 

Oxychilus draparnaudi 3.3 ± 1.5 (3) 1.5 ± 1.1 (5) 0 (1) 1.1 ± 1.2 (7) 0 (1) 0.8 ± 1.2 (6) 

Oxychilus sp.  2.7 ± 0.6 (3) 3.8 ± 1.3 (5) 0.0 ± 0.0 (2) 1.3 ± 1.2 (6) 0.0 ± 0.0 (2) 1.0 ± 1.2 (5) 

Ommatoiulus moreleti 3.1 ± 1.6 (8) (0) 1.4 ± 1.4 (8) (0) 2.9 ± 1.5 (7) (0) 

Porcellio scaber 2.8 ± 1.5 (6) 1.5 ± 2.1 (2) 0.5 ± 0.5 (6) 0.5 ± 0.7 (2) 0.0 ± 0.0 (3) 0.3 ± 0.5 (4) 

Entomobrya nivalis (0) 3.6 ± 1.1 (8) (0) 3.4 ± 1.3 (8) 9 (1) 3.2 ± 1.3 (6) 

Neanura muscorum 5 (1) 3.4 ± 1.0 (7) 4 (1) 3.1 ± 1.2 (7) 6.5 ± 3.5 (2) 3.0 ± 1.4 (5) 

Tomocerus minor (0) 3.6 ± 1.1 (8) 4 (1) 3.3 ± 1.4 (7) (0) 4.0 ± 2.5 (7) 

Vespula germanica 24.0 ± 10.4 (3) 12.6 ± 7.1 (5) 7.0 ± 0.0 (2) 5.0 ± 2.4 (6) 12.5 ± 7.8 (2) 9.0 ± 5.1 (5) 
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Table 4.13. Mean native taxon abundance compared between sites where alien species were present and absent in each habitat. 

Values in parentheses refer to the number of sites. 

 

Alien species 

Forest Fynbos Pine plantation 

Mean ± SD (sites) Mean ± SD (sites) Mean ± SD (sites) 

Present absent present absent present absent 

Arion hortensis complex 41.5 ± 48.0 (8) (0) 6.0 ± 8.4 (7) 0 (1) 1.2 ± 1.5 (6) 0 (1) 

Deroceras panormitanum 41.5 ± 48.0 (8) (0) 14.5 ± 4.0 (2) 2.2 ± 12.0 (6) 3 (1) 1.0 ± 1.5 (6) 

Lehmannia valentiana 41.5 ± 55.5 (6) 41.5 ± 26.2 (2) 0 (1) 6.0 ± 8.4 (7) 1.5 ± 2.1 (2) 0.8 ± 1.3 (5) 

Limax maximus 10 (1) 46.0 ± 49.9 (7) (0) 5.3 ± 8.0 (8) (0) 0.7 ± 1.4 (7) 

Cochlicopa sp. 23 (1) 44.1 ± 51.2 (7) (0) 5.3 ± 8.0 (8) (0) 0.7 ± 1.4 (7) 

Cochlicopa cf. lubricella 23 (1) 44.1 ± 51.2 (7) (0) 5.3 ± 8.0 (8) 1.5 ± 2.1 (2) 0.8 ± 1.3 (5) 

Vitrea contracta 21.5 ± 2.1 (2) 48.2 ± 54.8 (6) (0) 5.3 ± 8.0 (8) 2.0 ± 1.7 (3) 0.3 ± 0.5 (4) 

Cornu aspersum 64.7 ± 77.2 (3) 27.6 ± 20.0 (5) (0) 5.3 ± 8.0 (8) (0) 0.7 ± 1.4  7) 

cf. Punctum sp. 10 (1) 46.0 ± 49.9 (7) (0) 5.3 ± 8.0 (8) 1.2 ± 1.5(6) 0 (1) 

Lauria cylindracea (0) 41.5 ± 48.0 (8) (0) 5.3 ± 8.0 (8) 3 (1) 0.7 ± 1.2 (6) 

Oxychilus draparnaudi 31.0 ± 25.9 (3) 47.8 ± 59.6 (5) 0 (1) 6.0 ± 8.4 (7) 0 (1) 1.2 ± 1.5 (6) 

Oxychilus sp.  33.0 ± 25.2 (3) 46.6 ± 60.2 (5) 0.0 ± 0.0 (2) 7.0 ± 8.7 (6) 0.0 ± 0.0 (2) 1.4 ± 1.5 (5) 

Ommatoiulus moreleti 43.0 ± 45.2 (8) (0) 2.1 ± 2.5 (8) (0) 14.7 ± 16.0 (7) (0) 

Porcellio scaber 21.5 ± 19.3 (6) 2.5 ± 3.5 (2) 11.3 ± 25.8 (6) 1.0 ± 1.4 (2) 0.0 ± 0.0 (3) 13.3 ± 26.5 (4) 

Entomobrya nivalis (0) 190.9 ± 314.4 (8) (0) 14.5 ± 7.3 (8) 148 (1) 46.3 ± 40.0 (6) 

Neanura muscorum 945 (1) 15.6 ± 83.6 (7) 13 (1) 15.9 ± 7.8 (7) 93.5 ± 77.1 (2) 20.0 ± 44.5 (5) 

Tomocerus minor (0) 190.9 ± 314.4 (8) 12 (1) 14.9 ± 7.8 (7) (0) 60.9 ± 53.0 (7) 

Vespula germanica 76.0 ± 27.6 (3) 27.4 ± 20.9 (5) 14.5 ± 4.9 (2) 7.0 ± 3.3 (6) 83.0 ± 36.8 (2) 20.0 ± 10.8 (5) 
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The community composition of native snails, millipedes, woodlice, springtails and wasps 

was not structured according to the presence-absence of corresponding alien species. In MDS 

ordinations, sites did not cluster according to alien presence-absence, or a combination of alien 

presence-absence with habitat, so were not presented. ANOSIM showed that native snail 

community composition was not significantly different between sites where D. panormitanum 

was present and absent in each habitat. There was also no significant difference in snail 

community composition based on the presence-absence of the other alien molluscs. Springtail 

community composition compared between the presence and absence of N. muscorum was 

significantly different (R = 0.727, p = 0.048) in pine plantation, but not in forest or fynbos. P. 

scaber and V. germanica showed no significant influence on woodlice and wasp community 

composition respectively. 

 

Discussion 

 

Argentine ants and native ants 

The lack of apparent difference in sites invaded by Argentine ants, compared to sites 

where Argentine ants were absent, is a surprising result. Luruli (2007) found that in fynbos, 

native ant species richness may be eight times lower at Argentine ant invaded, compared to 

uninvaded, bait stations. Reduced native ant species richness and abundance in the presence 

of Argentine ants has also been reported in California (Heller et al., 2008), Spain (Oliveras et al., 

2005), Australia (Walters, 2006) and Japan (Touyama et al., 2003). In this study, no clear 

evidence was found for negative Argentine ant impacts on the mean species richness (Fig. 

4.2a), mean abundance (Fig. 4.2b and Table 4.2), or community composition (Fig. 4.4 and 

Table 4.3) of native ant species in forest, fynbos or pine plantation on the Cape Peninsula. 

Although Argentine ants were present at 16 of the 23 sites sampled, they were not 

collected in high abundance at all of these sites. Ant nests, including those belonging to 

Argentine ants, were not specifically searched for in this study. The sites sampled in this study 

were patch-mosaic in nature and in relatively close proximity to one another (different habitats 

were often adjoining), with strong edge effects likely for many of these small, remnant patches 

of native vegetation. Consequently, it remains unclear whether Argentine ants are able to 

establish permanent colonies in undisturbed fynbos on the Cape Peninsula, as has been 

reported in other protected areas (e.g. Kogelberg Biosphere Reserve: Christian, 2001). 

Native ant assemblages in forest appear to be similar to those in the adjacent exotic pine 

plantation, irrespective of Argentine ant presence/absence. This was expected, since most ant 
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species in pine plantation probably originated from native forest and/or represent widespread, 

habitat-generalist species. Of the six species not collected in pine plantation, Myrmicaria nigra 

and Pheidole capensis are seed-harvesters (Table 4.2). These species may not naturally 

survive under pine. Cape Peninsula pine plantations support few flowering plants and hardly 

ever any Proteaceae, so offer few opportunities for seed-harvesting ants. 

Nonetheless, the most parsimonious explanation for this apparent lack of impact of 

Argentine ants on native ants can be ascribed to the disturbance history of these sites. 

Argentine ant invasion varies with habitat structure, especially with past disturbance history. 

This covarying habitat structure may also be causing the variation in native ant assemblage 

composition and not Argentine ants themselves, or at least not alone. Only long-term 

experimental manipulations may clearly resolve such confounding causative variables. 

Invasive ant species are known to reduce native species richness, rapidly disassemble 

native ant communities, and alter community organisation amongst the species that persist 

(Sanders et al., 2003). This disrupted ant community pattern in the presence of invasive ants is 

evident at both biogeographic and local scales. In a local-scale study in fynbos, Luruli (2007) 

found altered ant community patterns with invasion: native ants were negatively associated 

(suggesting segregation) at uninvaded bait stations, but significantly positively associated 

(suggesting aggregation) at bait stations invaded by Argentine ants. 

In this study there was evidence for nonrandom co-occurrence of native ant species, 

suggesting an aggregated community, in fynbos and pine plantations sites where Argentine ants 

were present (Table 4.4). However, without being able to show significant changes in co-

occurrence patterns with alien invasion (i.e. between sites where Argentine ants were present 

and absent), it cannot be confidently concluded that Argentine ants are responsible for ant 

community disassembly on the Cape Peninsula. Fynbos is a naturally heterogeneous habitat, 

so nonrandom, aggregated spatial distributions are to be expected (Hui et al., 2010), even in the 

absence of a dominant invasive ant species. 

In forest sites in this study there was no evidence for nonrandom co-occurrence patterns 

of native ants, suggesting that Argentine ants do not influence community composition (Table 

4.4). However, in assuming that all sites are equiprobable (because they are of similar size and 

quality), negative co-occurrence patterns may be hidden by heterogeneity among sites (Gotelli 

& McCabe, 2002). Afrotemperate forest, like fynbos on the Cape Peninsula, is naturally 

heterogeneous. C-score may also be overly conservative, because it does not take differences 

in abundance into account. 
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The functional group approach was originally designed in Australia (Andersen, 1997a; 

Hoffmann & Andersen, 2003; Majer et al., 2004). It has useful applications in other regions 

(Andersen, 1997a), and is relevant in South Africa, because many of the common Australian ant 

genera also occur here (Andersen & Majer, 2004). Nevertheless, the functional group scheme 

has limitations for studies of community dynamics at local scales, when a detailed 

understanding of the impacts on individual species is needed (Andersen, 2010). Firstly, 

functional groups based on niche dimensions tend to be purely descriptive, even though they 

are based on global-scale responses of ants to environmental stress and disturbance at the 

genus or species-group level (Andersen, 2010). Secondly, functional group comparisons are 

limited, because they were designed for continental and intercontinental analyses of 

biogeographic patterns of community structure, and responses to disturbance (Andersen, 

1997a; Hoffmann & Andersen, 2003). Therefore, functional group comparisons may not always 

offer reliable interpretation at local scales. 

Despite these limitations, the functional group approach shows potential for explaining 

the impacts of invasive ants. In South Australia, sites invaded by Argentine ants supported 

greater proportions of Generalized Myrmicinae, Cold Climate Specialists, and Specialised 

Predators (Walters, 2006). In this study, the native ant community was represented by six 

functional groups (Table 4.5), which in most instances had lower mean abundance in the 

presence of Argentine ants (Fig. 4b). 

Generalized Myrmicinae and Subordinate Camponotini species richness was unaffected 

by invasion, suggesting that they can co-occur, even though their numbers were lower. 

Nevertheless, impacts may differ at the species level and in different habitats. Specialist 

Predators had fewer individuals at invaded sites in fynbos, suggesting they may be unable to 

coexist with Argentine ants. Climate Specialists, such as Meranoplus (HCS) and Tetraponera 

(TCS), generally occur in habitats where native Dominant Dolichoderinae are not dominant or 

abundant (Andersen, 1997a; Holway, 1999; Andersen, 2000), contrary to the findings here. 

However, this may simply reflect a limitation of the genus-level based functional group 

approach. Luruli (2007) did not collect Tetraponera, so comparisons in other fynbos regions are 

not yet possible. Opportunists had consistently more species and a higher mean number of 

individuals in the presence of Argentine ants in each habitat. This functional group was the most 

taxonomically diverse (three subfamilies, four genera and five species) of those represented 

(Table 4.5). 

This study, like that of Gotelli & Arnett (2000) and many others, is only a snapshot 

comparison of invaded and uninvaded sites, and suffers from at least two potential 
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shortcomings (Sanders et al., 2003). Firstly, invaded and uninvaded sites may vary in ways that 

either promote invasive species or disadvantage native species. For example, differing 

disturbance levels apply to the fynbos sites in this study. Two of the invaded sites where 

Argentine ants were abundant were recovering Sandstone Fynbos (Sites 3 and 30). These sites 

were previously under pine plantation, and this historic disturbance may have facilitated 

invasion, or acted in concert with Argentine ant invasion to influence community composition. 

Secondly, snapshot studies cannot determine whether invaded sites differed from uninvaded 

sites in species richness and community composition patterns prior to invasion. If not 

acknowledged, these shortcomings could lead to misinterpretation of the impacts of invasive 

alien species on community organisation. It is not known how many of the “uninvaded” sites 

sampled here were previously invaded by Argentine ants. There is some evidence for a 

dynamic invasion front, since Argentine ants were previously collected at Site 2 (pine) by 

Raharinjanahary (2007), but were not found there two years later. The impacts of invasion may 

have a long-lasting effect on the community, even after Argentine ants have abandoned a site. 

 

Argentine ants and other invertebrates 

Non-ant invertebrates are affected by both the direct impacts of invasive alien ants and the 

resultant indirect impacts of the displacement of native ants (Holway et al., 2002). Displacement 

of other invertebrates often leads to cascading effects on ecosystems, and disrupts ecosystem 

processes (Human & Gordon, 1997). However, clear impacts of invasive ants on entire 

invertebrate communities have seldom been reported, and were not found in this study. 

Neither non-ant invertebrate species richness (Fig. 4.6a), nor community composition 

(Fig. 4.7a), showed an impact of Argentine ant invasion. A previous study in fynbos on the Cape 

Peninsula also showed that Argentine ants had little impact on ground-dwelling invertebrate 

diversity (Pryke & Samways, 2010). Weak community-level effects of Argentine ants on ground-

dwelling arthropods have been reported in riparian woodlands in northern California (Holway, 

1998) and urban parklands in Adelaide, Australia (Walters, 2006). In all these habitats, the 

impacts of invasive ants may be difficult to detect, because communities were most likely 

shaped by native ant predation prior to invasion (Cole et al., 1992). The most severe impacts of 

invasive ants on invertebrate communities are often seen soon after invasion (Heller et al., 

2008), whereas Argentine ants have been established on the Cape Peninsula for about a 

century (Skaife, 1961; 1962; Richardson et al., 1992). 

Community-level impacts of Argentine ant invasion were not clear in this study, because 

the impacts on the mean abundance of individual non-ant invertebrate taxa (mostly orders) 
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differed among taxa (Table 4.6). Investigations of impacts at the ordinal level may be too 

coarse, since behavioural and life history traits vary widely within several orders. Beetles are a 

prime example. Predatory beetles, such as Carabidae, may be severely negatively affected by 

Argentine ant invasion (Cole et al., 1992), either because they compete with Argentine ants for 

arthropod prey, or have vulnerable soil-inhabiting larvae. Boring beetles, such as Scolytidae, for 

example, should be less vulnerable to attack. Argentine ants do not appear to have an obvious 

negative impact on xylophagous or xylomycophagous communities in forest or pine plantation 

on the Cape Peninsula (Raharinjanahary, 2007). Body size may also influence the impacts of 

invasive ants on invertebrates, with affects intuitively expected to be more pronounced in small 

species. 

Furthermore, the data collected here do not provide any evidence for a synergistic 

impact of pine plantations acting in concert with Argentine ants (Fig. 4.7a). It is not yet clear 

whether, or how, Argentine ants interact with plantations or invasive stands of alien woody 

plants to impact native invertebrate species richness, abundance or community composition. 

For Cape Peninsula endemic invertebrates, mean species richness (Fig. 4.6c) and 

abundance (Fig. 4.6d) were slightly (but not significantly) higher at sites where Argentine ants 

were present. Since populations of endemic invertebrates often occur naturally in low densities, 

the impacts of Argentine ants are usually difficult to demonstrate statistically, as was the case 

for endemic arthropods on Hawaii (Cole et al., 1992). This may also apply to several endemic 

species collected in low numbers in this study. Cole et al. (1992) did show negative impacts of 

Argentine ants on ground-dwelling, endemic, flightless beetles. While the abundance of 

Bohepilissus nitidus, a tiny Cape Peninsula endemic dung beetle, was positively associated with 

Argentine ant presence in Afrotemperate forest (Table 4.7), confounding (unmeasurable) 

variables and the low number of replicated sites needs to be considered. Contrary to prediction, 

the community composition of Cape Peninsula endemic species was not apparently influenced 

by Argentine ant presence-absence, either within, or between, forest and fynbos (Fig. 4.7b and 

Table 4.9). 

For non-ant alien invertebrates, mean species richness (Fig. 4.6e) and abundance (Fig. 

4.6f) were slightly (although not statistically significantly) higher at sites where Argentine ants 

were present in forest and fynbos, but not in pine plantation. Most non-ant alien invertebrate 

species showed positive associations with invasion by Argentine ants across habitats (Table 

4.8), but these impacts varied among taxa. This may suggest a common invasion susceptibility 

and/or disturbance history of certain sites, for various reasons, rather than an effect of Argentine 
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ants. The community composition of non-ant alien invertebrates (Fig. 4.7c and Table 4.9) was 

again not primarily determined by Argentine ant presence-absence. 

 

Other alien invertebrates 

The ecological impacts of most alien invertebrates have not been studied in South Africa. This 

applies to alien molluscs, despite several species showing negative economic impacts as crop 

pests (Herbert, 2010). Among the alien molluscs recorded in this study, Oxychilus draparnaudi, 

Arion hortensis, Deroceras panormitanum and Limax maximus have also invaded native forest 

in New Zealand (Mahlfeld, 2000), where their ecological impacts have been studied. In the 

Waipipi Scenic Reserve in New Zealand, native snail species richness and abundance have 

decreased substantially since the carnivorous A. hortensis and Cochlicopa lubrica were first 

reported in 1981 (Mahlfeld, 2000 and references therein). Both have invaded South Africa and 

were collected in this study. Comparisons of impacts based on presence-absence were not 

made for A. hortensis, because it was collected at 21 of the 23 sites sampled; being absent at 

only one fynbos (Site 26) and one pine plantation (Site 31) site. No mollusc species (either alien 

or native) was collected at Site 26. This fynbos site was quite dry, exposed and had sparse, dry 

leaf litter, so may not be suitable in general for molluscs. At Site 31 (pine plantation), only one 

individual each of two other alien molluscs (Oxychilus sp. and cf. Punctum sp.) was collected. 

For some unknown reason, this pine site also appears to be unsuitable for molluscs. Other 

native forest litter taxa, including millipedes and woodlice, were likewise poorly represented at 

this site. 

Although the slug D. panormitanum feeds primarily on plant material, it is aggressive 

towards other individuals, bites readily and is cannibalistic, even when food is abundant 

(Herbert, 2010). It is pertinent to note that no native slug species was collected in this study. 

Furthermore, in this study, D. panormitanum abundance was positively and significantly 

correlated with both native snail species richness and abundance across habitats. Mean native 

snail species richness and abundance were also significantly higher at sites where D. 

panormitanum was present. While this suggests that D. panormitanum does not negatively 

impact the native mollusc fauna, it more likely implies that certain sites and habitats (namely 

forest) are more attractive to molluscs, whether native or alien. Alien slugs may further impact 

the native fauna by outcompeting them for moisture-retaining spaces under rocks, logs and in 

ground surface depressions; especially during the summer dry season (Mahlfeld, 2000). 

Oxychilus draparnaudi readily eats other land snails in captivity, and appears to have 

reduced the numbers and diversity of large native snail species in Iowa, more likely as a 
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consequence of carnivory than competition for food (Frest & Rhodes, 1982). O. draparnaudi has 

also been identified as the most serious introduced predator of native terrestrial snails in New 

Zealand, threatening at least two rare species with extinction (Mahlfeld, 2000). In South Africa, 

the native dwarf cannibal snails, Nata tarachodes and N. vernicosa, prey on smaller native 

snails (such as Trachycystis spp.) and on earthworms (Herbert & Kilburn, 2004). This suggests 

that the native snail fauna of the Cape Peninsula is not entirely naïve to, and may be able to 

tolerate or avoid, alien cannibal snails such as O. draparnaudi. No significant correlation of 

native snail species with alien abundance, or difference in mean native snail species richness or 

abundance, was found for O. draparnaudi. The observed reductions in native snail richness and 

abundance where this species occurred in each habitat may prove statistically significant with a 

larger sample size and parametric statistics. O. draparnaudi is relatively abundant in natural 

habitats around Cape Town (Herbert, 2010), so numbers and potential impact should be 

monitored carefully. There are enough examples around the world of the devastating impacts of 

successfully introduced molluscs to take this threat seriously (Mahlfeld, 2000). 

If the Portuguese millipede, Ommatoiulus moreleti, does have an impact on the Cape 

Peninsula, juliform (worm-like) native millipede species are probably worst affected, because 

they are morphologically and behaviourally most similar to Portuguese millipedes, and might 

thus experience interference competition. However, in light of the significant positive 

correlations recorded here, millipedes may simply congregate in suitable microhabitats, with 

little or no interaction between species. O. moreleti was collected at all 23 sites sampled, so 

comparisons of potential impacts between sites based on presence-absence cannot be made. 

Portuguese millipedes were also far more abundant than any native millipede, and 2.6 times 

more abundant than all native millipedes combined across sites. Portuguese millipedes typically 

quickly reach high abundance at invaded sites (Baker, 1985; McKillup et al., 1988; Stoev et al., 

2010). 

Collembola are often the most abundant terrestrial arthropods, many species have 

cosmopolitan distributions, and several have become invasive (Zettel, 2010). Entomobrya 

nivalis and Tomocerus minor were collected at a single site each, so the impacts of these 

springtails on the native fauna could not be calculated. T. minor had not previously been 

recorded in South Africa, so it may either have only recently invaded the Cape Peninsula, or 

have simply never been collected. It is known from a single pine plantation (Site 15, Cecilia), 

which has been clear-felled since sampling. Neanura muscorum was collected at four sites, and 

showed a significant correlation with native springtail richness (R = 0.545, p = 0.007), and 

higher mean native species richness occurred at sites where it was present (Z = -2.433, p = 
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0.009). These springtails are not known or expected to have serious detrimental impacts on 

native springtails, or on other invertebrates (Coates, 1968). They feed mainly on decaying 

organic matter and associated microorganisms, and are therefore not considered pests (Zettel, 

2010). However, as detritivores, alien springtails may have significant effects on decomposition 

processes (Greenslade, 2002), and indirectly impact other detritivores. 

The abundance of European wasps (Vespula germanica) was positively and significantly 

correlated with the abundance of native wasps in both forest and pine plantation. These positive 

correlations could reflect selection for Lepidoptera larvae-rich areas, since many wasps are 

predators or parasites of Lepidoptera. Sackmann et al. (2008) experimentally showed that V. 

germanica did not affect arthropod assemblages in north-west Patagonia, Argentina. Although 

their finding contradicts previous studies elsewhere, Sackmann et al. (2008) suggest that the 

low population levels of European wasp, relative to those in other invaded regions, might 

explain these findings. European wasp numbers collected in this study were also very low. The 

reported impacts on arthropods are more severe when European wasps switch from small 

annual colonies to large perennial colonies, as has been demonstrated in Hawaii (Wilson et al., 

2009). The climatically marginal conditions of fynbos (Tribe & Richardson, 1994) may have 

prevented European wasps from switching to large perennial colonies on the Cape Peninsula. 

However, this colony switch cannot be ruled out in the future, should European wasps undergo 

range expansion during wetter periods to invade the moister east coast of South Africa. 

The composition of native snail, millipede, woodlouse, springtail and wasp communities 

does not appear to have been influenced by the presence-absence of an alien species in each 

respective invertebrate taxon. In Europe, no ecological impacts have been documented for alien 

spiders (Nentwig & Kobelt, 2010), myriapods (Stoev et al., 2010), terrestrial crustaceans 

(Cochard et al., 2010), springtails (Zettel, 2010), bugs (Heteroptera) (Rabitsch, 2010) or flies 

(Skuhravá et al., 2010). The literature supports evidence that some invasions in fact increase 

species diversity (Hulme, 2003). However, correlation does not imply causation. The most 

productive habitats may support both the highest proportion of alien species and the highest 

species richness of native species. This would explain correlated native and alien spider 

diversity in California (Burger et al., 2001), and is the most parsimonious interpretation of the 

observed positive correlations between various alien species and their taxonomic equivalents 

here. For most taxa, vegetation or habitat type, rather than the presence of an alien species, 

was the most parsimonius explanation for community similarity. 

It remains a scientific curiosity why some alien species persist for decades in low 

numbers at a given location without spreading (Nentwig & Josefsson, 2010). In this study, Limax 
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maximus appears to be such a curiosity, having persisted in a single patch of forest for over a 

century (Herbert, 2010). Most of these alien species were introduced to South Africa many 

decades ago, and some centuries ago (Table 4.1), with 15 first recorded in South Africa prior to 

1970. Those recorded more recently (O. moreleti, V. contracta and T. minor) were probably 

misidentified, not collected, or not described in the literature until recently. A long naturalised 

residency time on the Cape Peninsula can also be generally expected, since all 18 non-ant alien 

species have a mostly European origin, promoting their establishment in the temperate, 

Mediterranean climate of the Western Cape. With the establishment of pine plantations on the 

Cape Peninsula in the 1880s, a number of these alien invertebrate species are likely to have 

been accidentally introduced at the same time, being brought into the country in potted soil.  

There are various possible reasons for the low numbers of several of the alien species collected 

and some may still be in the lag phase of invasion, showing little or no increase in abundance or 

spread (Crooks, 2005; Aikio et al., 2010). Limax maximus for example may even be stuck in lag 

phase, not having spread in over a hundred years since it was first recorded on Table Mountain. 

No quantified, systematic and comprehensivesurvey of terrestrial alien invertebrates has 

been conducted on the Cape Peninsula, or anywhere else in South Africa, prior to this study. 

Consequently, no analyses of temporal trends in alien abundance and distribution are possible, 

given the absence of baseline data. Alien species may be kept under control by native species, 

as in the case of Portuguese millipede, which is controlled by a native rhabditid nematode in 

Australia (McKillup et al., 1988). Alien species (e.g. European wasp) may show annual variation 

in population size, with the annual impact on the native fauna fluctuating accordingly. This study 

was not designed to provide evidence for lag phases, control by native species, or annual 

fluctuations in alien populations. Nevertheless, logic dictates that the impact of an alien species 

is proportional to its abundance (Parker et al., 1999). Based on the ‘Ten’s Rule’, there is also a 

very low probability that the alien species collected are all high-impact invaders (Williamson & 

Fitter, 1996; Ricciardi & Kipp, 2008). 

 

Conclusion 

The comparative approach adopted here provides no evidence for the displacement and 

impoverishment of native ground-dwelling ant or other invertebrate communities consistent with 

the findings in relation to Argentine ant invasions reported elsewhere. Neither ant functional 

group nor co-occurrence patterns appear to be altered in the presence of Argentine ants. 

Argentine ant invasion on the Cape Peninsula does not appear to have negatively impacted 

native ant or other invertebrate communities. Habitat structure and disturbance history offers a 
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more parsimonious explanation for the trends observed. Several of the impacts observed may 

be influenced by habitat heterogeneity, especially in fynbos. Findings often vary among studies 

due to different durations and levels of invasion, disturbance history, habitat variability, 

compositional differences in the original communities, or simply due to the bias inherent in 

various sampling methods. 

Finding an alien species in a non-invasive state does not of course mean that it cannot 

become invasive and cause severe ecological impact in the future (Nentwig & Josefsson, 2010). 

Thus, a precautionary approach is necessary in light of the apparent lack of impact of these 19 

alien species, especially given the high levels of local invertebrate endemism found on the Cape 

Peninsula (Picker & Samways, 1996). The potential loss of endemics resulting from invasion 

has obvious implications for biodiversity conservation in a national park which has World 

Heritage status and global biodiversity significance. The potential for future invasions by other 

alien species also cannot be ruled out, and is heightened by increasing globalisation, 

international trade, and associated human-assisted transportation of species. This study 

provides a baseline against which future changes in abundance, distribution, composition and 

impacts of alien invertebrates on the Cape Peninsula can be compared. 
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CHAPTER 5. ANTS AS INDICATORS OF RESTORATION PROGRESS FOLLOWING 

CLEAR-FELLING OF PINE PLANTATIONS IN A MEDITERRANEAN-TYPE ECOSYSTEM 

 

Introduction 

 

Inventorying and monitoring are two separate tasks with different goals. Inventory, or 

biodiversity assessment, aims to document as fully as possible the taxonomic and ecological 

diversity of all, or part of, the biota of an area (Kremen et al., 1993; Basset et al., 2009) and can 

hence be accomplished with a single set of samples. By comparison, biological monitoring aims 

to document population changes over time, using repeat sampling (Noss, 1990; Basset et al., 

2009). The goal of biological monitoring is to distinguish between human-induced disturbance 

and natural fluctuations from a baseline state (Andersen, 1997b; 1999). This goal necessitates 

monitoring control sites in ‘pristine’ habitats, in addition to sites subject to disturbance (Kremen 

et al., 1993). Well-designed inventories can thus provide the obligatory baseline data for 

monitoring (Noss, 1990; Rohr et al., 2007); the purpose of this study. 

The value of, and necessity for, inclusion of invertebrates in biodiversity monitoring 

programmes has been widely promoted (Kremen et al., 1993; Andersen et al., 2004; Rohr et al., 

2007). Invertebrates can respond rapidly to environmental changes, because they have short 

generation times, compared to vertebrates or trees (Kremen et al., 1993). Small body size, low 

vagility, poor dispersal ability and specific habitat requirements also mean that ground-dwelling 

invertebrates show stronger patterns of spatial turnover than both vertebrates and flowering 

plants (Ferrier et al., 1999). Ground-dwelling invertebrates show greater site fidelity than most 

vertebrates (Kremen et al., 1993; Oliver & Beattie, 1996). Furthermore, invertebrates generally 

greatly outnumber vertebrates in abundance, species richness and higher taxa diversity, often 

by orders of magnitude (Kitching, 1999; New, 1999b). This high biomass and diversity both 

reduces the size, and hence environmental impact, of samples and affords statistical rigor in 

both inventory and monitoring of invertebrates. 

Neither inventory nor monitoring of invertebrates can be exhaustive, due to the difficulty 

of adequately identifying the full range of taxa present (Kremen et al., 1993). The challenges of 

generating invertebrate species inventories should not be underestimated (Engelbrecht, 2010). 

Monitoring programmes accordingly rely on indicator taxa that can be identified, given available 

resources and personnel, and that respond quickly to environmental change, in ways that are 

easily measured or observed (Kremen et al., 1993). Invertebrates are usually more difficult to 
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survey than plants, so their use as indicators can only be justified if they perform better than 

plants and provide additional (fine-scale) information (Andersen & Sparling, 1997). 

For most invertebrate groups, (1) a large proportion of species has not been described 

or discovered, (2) the distribution patterns of species are poorly or unknown, (3) too few (if any) 

specialists are available to identify specimens, (4) sampling protocols are not adequately 

standardised and (5) knowledge of responses to environmental change is limited and often 

hypothetical, or extrapolated from a few case studies (New, 1999b). Terrestrial invertebrates fall 

into three broad categories of value as tools for monitoring: well-known, catch-up and black hole 

taxa (New, 1999a; 1999b). Well-known taxa have a long history of interest, most species are 

described, their biology is broadly understood and patterns of distribution are reasonably well 

documented. Examples of well-known taxa include butterflies and dragonflies. Catch-up taxa 

include many groups of invertebrates for which there is a fair level of knowledge of taxonomy, 

biology and distribution. With some focussed attention, these catch-up taxa could be elevated to 

‘well-known’ status for conservation value. The distinction between well-known and catch-up 

taxa differs among regions. Ants, for example, may be considered well-known taxa in mesic 

Australia, but catch-up taxa in temperate Australia and other parts of the world. By comparison, 

black hole taxa have very poorly understood taxonomy, biology and distribution. Consequently, 

solid ecological interpretation of black hole taxa is difficult or impossible, and these taxa have 

little proven value as indicators. Black hole taxa, such as nematodes, are best ignored for 

conservation purposes, especially in light of the limited resources available for invertebrate 

conservation. Taxa with a high proportion of rare and low abundance species similarly have 

limited use or relevance for monitoring, due to the low probability of finding them (New, 1999b). 

There is often much confusion over what is being indicated (Andersen, 1999), because 

indicators have been applied in a variety of contexts (e.g. Noss, 1990). These contexts include 

indication of habitat destruction, contamination, modification and rehabilitation, together with 

vegetation succession, species diversity and climate change (McGeoch, 1998). It is therefore 

essential to state precisely what the indicator taxa selected are intended to indicate, especially 

when contexts are related to management actions (Engelbrecht, 2010). Terrestrial invertebrates 

used to assess general ecological change after disturbances have been referred to as 

‘ecological indicators’ for their ability to demonstrate the impacts of environmental change on 

biota (McGeoch, 1998). Ecological indicators (the focus of this study) differ from biological 

indicators (McGeoch, 1998), that are used as surrogates of biodiversity. 

Even when there is agreement on what to indicate, it is difficult to know which indicator 

species to choose (Simberloff, 1998) because there is no single indicator for biodiversity (Duelli 
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& Obrist, 2003). Choice of indicator based on statements of faith about one’s favourite 

invertebrate group is not enough to validate their use (Andersen, 1999). Demonstration of a 

chosen indicator’s response to disturbance is also not sufficient to validate its reliability as an 

indicator. Ecological indicators must also genuinely reflect broad ecological change (Andersen, 

1999). It is advantageous, although not required, for ecological indicator taxa to have presence-

absence patterns that are positively linearly correlated with the species richness of a larger 

group of organisms (Duelli & Obrist, 2003; Fleishman et al., 2005; Rohr et al., 2007). While this 

correlation or cross-taxon congruency is often the goal of indicators, it is most effective within 

taxonomic groups. Cross-taxon congruence should be approached with caution, because the 

correlation of species richness between pairs of taxa varies taxonomically and geographically 

(Su et al., 2004; Bilton et al., 2006). Using higher taxa offers better congruency for invertebrates 

than does cross-taxon comparison (Lovell et al., 2007). However, no single taxon sufficiently 

indicates the diversity of others, even in well-studied regions (such as tropical forest) and 

considering a range of taxa (birds, butterflies, flying beetles, canopy beetles, canopy ants, leaf 

litter ants, termites and soil nematodes) (Lawton et al., 1998). To avoid misinterpretation, true 

congruency should only be inferred when ρ-values are greater than 0.75 (Lovell et al., 2007). 

Hammond’s (1994) ‘shopping basket’ approach to indicator selection is widely 

recommended (e.g. McGeoch, 1998) and supported with case studies (e.g. Kotze & Samways, 

1999). The ‘shopping basket’ approach selects a set of taxa that each represents the response 

of taxonomically or functionally closely related taxa, and thereby adequately represents the 

community as a whole. Widening the taxonomic focus to families or orders has the advantage of 

unintentionally including representative species in a range of guilds (Basset et al., 2004). This 

facilitates wider interpretation than is possible for single species indicators. Recommending 

individual species as indicators has limitations, because those species are seldom suitable 

outside of the system in which they were tested (Gollan et al., 2010). Nevertheless, individual 

species can have advantages as indicators in specific cases, acting as ‘umbrella’ or ‘flagship’ 

species, when resources and knowledge needed for more comprehensive analyses are limited. 

The use of unidentified morphospecies (sensu Oliver & Beattie, 1996) as indicators has 

limitations for the interpretation of data (Majer, 2009) and is no longer recommended. 

Morphospecies may have some use for identifying general trends (Snyder & Hendrix, 2008), but 

can be misleading, especially when males, females and juveniles of individual species are 

morphologically different and can mistakenly be classified as separate morphospecies (Slotow 

& Hamer, 2000). Morphospecies have little value as ecological indicators for monitoring, 

because they overlook potentially important information, such as region of origin (Gollan et al., 
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2010). Failure to identify alien, and especially invasive, species could also misguide 

management decisions and unknowingly promote non-native species (Gollan et al., 2010). Alien 

invertebrates can be used as a measure of restoration success or failure, because the 

proportion of alien invertebrates is likely to differ between restored and undisturbed sites 

(Longcore, 2003). Therefore, taxa that can only be identified to morphospecies, and for which 

the alien fauna is not well known, would not make appropriate, or responsible, indicators. 

Ants have been widely used as indicator species, because they are often highly 

sensitive to disturbance and habitat transformation (Hoffmann & Andersen, 2003). In particular, 

ants have a long history of use as indicators of restoration success in the mining industry in 

Australia (e.g. Andersen, 1997b) and more recently in South Africa (Majer & De Kock, 1992; van 

Hamburg et al., 2004). Ant communities respond to disturbance through loss of diversity and 

through changes in species composition, interspecific interactions, trophic interactions with 

honeydew-producing hemipterans and ant-plants, and ant-provided ecosystem services, such 

as seed dispersal (Philpott et al., 2010). Ant assemblages can be reliably assessed on both 

taxonomic (genera are easily identified) and functional levels (New, 2000). Their functional 

importance and ease of sampling makes ants effective and efficient taxa for assessment and 

monitoring in land management (Andersen, 2010). 

As with any indicator, the use of ants as ecological indicators relies on the assumption 

that changes in ant communities reflect ecosystem changes (Andersen, 1999; 2010). This 

assumption appears to be valid, at least for most relevant studies on ants (Andersen, 2010). 

However, ants may have limited predictive indicator value when small scale heterogeneity is 

high, as in grassland ecosystems in Victoria, Australia (New, 2000). In such cases, ants may not 

be sufficiently sensitive to floristic change to be used as the only indicators for monitoring 

environmental change. The choice of indicator taxa depends on the monitoring goals set. 

Ants and other invertebrates show potential as ecological indicators of restoration 

progress. Restoration often relies on the assumption that the native fauna associated with a 

habitat will return as the natural vegetation is re-established (Longcore, 2003; Gratton & Denno, 

2005; Majer, 2009; Babin-Fenske & Anand, 2010). This assumption is seldom verified, despite 

the importance of the re-establishment of trophic interactions among organisms in restored 

habitats (Gratton & Denno, 2006). The presence of organisms is not sufficient to demonstrate 

that they adequately perform ecosystem functions in restored habitats (Majer, 2009). Trophic 

interactions should be monitored explicitly, because they are vital to our understanding of how 

ecosystems recover (Gratton & Denno, 2006). Different taxa colonise disturbed sites at different 

rates (Dunn, 2004). In tropical rainforest restoration, for example, invertebrate herbivores and 
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detritivores recover much faster than predators (Jansen, 1997). This trend relates to different 

levels of taxa in the food chain, and is therefore probably widespread across habitats. This trend 

can also be used as a measure of restoration progress. However, there is a distinct paucity of 

studies on terrestrial invertebrates in the restoration literature. For example, a review of the first 

14 years of Restoration Ecology revealed that of the 845 papers published, a meagre 12.4% 

had vertebrates or invertebrates as the main focus (Majer, 2009). Few generalities have been 

deduced on the use of invertebrates in the restoration process. 

The species identity of fauna that return to sites undergoing restoration is important. On 

mined dunes in Maputaland, South Africa, the dung beetle fauna is dominated by widespread 

species, whereas natural dune forest that has not been mined supports a high proportion of 

localised endemic dung beetle species (Davis et al., 2002). While the absence of endemic 

species at rehabilitated sites is expected, this has implications for biodiversity conservation, and 

highlights the danger in using species richness as the sole measure of restoration success. For 

ants and birds in tropical forests, the recovery of species composition takes much longer than 

the recovery of species richness (Dunn, 2004). This finding is probably broadly applicable to 

most terrestrial invertebrate taxa in most habitats. 

To measure restoration progress, an assessment of the resultant species assemblage is 

needed (Brewer & Menzel, 2009). Some knowledge of reference condition and at least one 

extant reference site are advantageous. Restored sites should ideally be compared against a 

number of reference sites to encompass historically relevant environmental variation. This may 

not always be possible, or practical, since appropriate reference sites may be extremely rare or 

no longer exist. Attention should also be paid to off-site species that expanded their distribution 

into the areas now being restored, but that were not part of the original reference community. 

Regionally rare off-site species may be negatively affected by restoration efforts, which is of 

particular concern in biodiversity hotspots. 

The Cape Peninsula is renowned for its exceptional diversity and endemism, with 158 

endemic angiosperm (Helme & Trinder-Smith, 2006) and at least 111 endemic invertebrate 

(Picker & Samways, 1996) species recorded in an area of 471 km2. The greatest threat to 

biodiversity on the Cape Peninsula comes from increasing alien plant invasions (Richardson et 

al., 1996), which are predicted to replace at least 30% of the remaining natural vegetation over 

the next two decades (Rouget et al., 2003). Removal of commercial pine plantations is akin to 

clearing invasive alien stands, because pines were originally planted into pristine fynbos 

(Holmes et al., 2000). Pine plantations also act as the source for many of the alien plant 

invasions threatening biodiversity on the Cape Peninsula (Richardson et al., 1996). The spread 
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of invasive alien trees from commercial plantations into adjacent native vegetation threatens 

conservation areas (Armstrong et al., 1998), requires on-going management intervention, and 

offers strong motivation for the removal of these old plantations. 

Pine plantations on the Cape Peninsula were first established in the 1880s (Cowling et 

al., 1996; Richardson & Higgins, 1998). Commercial plantations were established in the fynbos 

surrounding forest patches, but rarely in areas cleared of evergreen native forest (Mucina & 

Geldenhuys, 2006). Therefore, restoration after clear-felling pine plantations should be aimed 

towards fynbos, not forest, communities. Today, plantations on the eastern slopes of the Table 

Mountain range are in Peninsula Granite Fynbos, because Peninsula Sandstone Fynbos was 

too unproductive to sustain plantations (T. Rebelo pers. comm., 2010). Very few patches of 

intact Peninsula Granite Fynbos remain to act as source populations of plants and invertebrates 

colonising clear-felled patches. Sandstone Fynbos, rather than Granite Fynbos, surrounds most 

plantations and clear-felled stands on the eastern slopes. Therefore, restoration of the majority 

of clear-felled pine stands back to the exact original vegetation type and associated faunal 

communities is unlikely. To add to this dilemma, invertebrate community composition (at least of 

the litter fauna) appears to differ between Granite and Sandstone Fynbos (refer to previous 

chapters). Regardless of origin, native fynbos invertebrates should, however, be functionally 

similar enough to maintain ecosystem processes, such as seed dispersal, litter decomposition 

and nutrient recycling in these restored areas. The re-establishment of these key ecosystem 

processes is central to most restoration projects (Holmes & Richardson, 1999). 

A structurally and functionally representative fynbos plant community can recover from 

the soil seed-bank alone, following alien clearance and fire in recently-invaded mountain fynbos 

(Holmes & Marais, 2000). Serotinous proteoid shrubs and other species lacking soil storage of 

seeds are generally the only species absent in seed-bank restored communities (Holmes, 

2002). Fynbos seed-banks are able to survive for over 25 years under stands of alien Acacia on 

the Cape Peninsula, but are severely reduced in both density and species richness (Holmes & 

Cowling, 1997; Holmes, 2002). By comparison, fynbos seed-banks under pine plantations on 

the Cape Peninsula are unlikely to still survive, because these plantations have a much longer 

planting history (sometimes exceeding 100 years) than the invasive Acacia stands studied. 

These commercial pine plantations have also undergone several planting rotations, further 

compromising viable, dormant seeds. Most fynbos species have short seed dispersal distances, 

so natural recovery of vegetation through colonisation from surrounding fynbos patches may 

take several fire cycles (Holmes & Richardson, 1999), translating to several decades. 
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Local extinction of many fynbos plant species has been reported following invasion by 

pine (Richardson & van Wilgen, 1986; Richardson et al., 1989). Most fynbos species are unable 

to withstand shading under pine, although some native geophytes, including Ornithogalum and 

Moraea, do persist (Adamson, 1927). This is yet another reason to remove pine plantations in 

fynbos, so as to minimise and eventually eliminate propagule pressure. Pines have a tendency 

to form dense thickets and often out-compete fynbos shrubs in areas recovering from fire 

(Richardson et al., 1994). Most pine seedlings establish in the first two years after fire in fynbos, 

when native plant cover is low (Richardson & Cowling, 1992). This may also be the case in 

clear-felled pine, where pine seedlings are among the first plant species to establish (C. Uys 

pers. obs.). This also implies that the success of restoration depends on follow-up removal of 

invasive alien plants, especially pine seedlings, within the first few years after clear-felling. 

Terrestrial invertebrates have not been identified or tested as ecological indicators in 

fynbos, although they have been used as indicators of restoration success in other 

Mediterranean-type vegetation, such as coastal sage scrub in southern California (Longcore, 

2003). Therefore, it is important to identify suitable ecological indicator taxa that reflect 

appropriate recovery of the litter invertebrate fauna, after clear-felling of pine plantation, towards 

assemblages that are more typical of mature fynbos on the Cape Peninsula. 

The aim of this study was thus to identify and test suitable potential ground-dwelling 

invertebrate taxa for use as ecological indicators for monitoring restoration progress in fynbos. 

Two hypotheses were tested. The first hypothesis tested whether the community composition of 

the selected indicator taxon reflects the chronosequence of time-since-felling. It was predicted 

that the invertebrate community composition of older felled sites (i.e. those felled over five years 

before sampling) would be more similar to fynbos sites than to pine plantation sites. The second 

hypothesis tested that the indicator species identified from forest, fynbos and pine plantation 

sites would be reliable indicators when tested using the clear-felled sites. Effective restoration of 

fynbos is likely to take several decades, and the oldest sites undergoing restoration were less 

than a decade since clear-felling. Therefore, it was not expected that any of the clear-felled sites 

would have similar or equivalent invertebrate communities to the mature Sandstone or Granite 

Fynbos sites. Nevertheless, if the characteristic ecological indicator species identified in the 

initial selection are in fact good indicators of mature, intact fynbos habitat, then they will still be 

scored as such when clear-felled sites are added to the comparison. 

Considering the many taxonomic challenges associated with terrestrial invertebrates, 

monitoring programmes should focus on adult stages of reasonably well-collected species 

(Basset et al., 2009), preferably well-known taxa (New, 1999a; 1999b). Indicator use should 
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follow a basic two-step process: initial identification, followed by testing the potential indicator 

taxa (McGeoch, 1998; McGeoch et al., 2002). Guidelines for developing effective and efficient 

monitoring programmes for invertebrates need to be tested with case studies (e.g. Rohr et al., 

2007). Ideally, case studies should adopt both coarse- and fine-filter approaches. Monitoring 

invasive alien species is one such fine-filter approach (Noss, 1990). 

 

Methods 

 

Study sites and collecting methods for indicator selection data 

Ecological indicator taxa were selected from the ground-dwelling invertebrates collected in three 

habitats over one spring-summer season. Refer to Chapter 2 and Appendix A for the location of 

the sites sampled and collecting methods used in Western Cape Afrotemperate Forest (n = 8 

sites), Peninsula Sandstone and Granite Fynbos (n = 8 sites) and pine plantation (n = 7 sites; 

Site 11 omitted) in Table Mountain National Park, on the Cape Peninsula. For each of the 23 

sites sampled in forest, fynbos and pine plantation, data from the replicates (10 leaf litter, 10 

soil, 10 pitfall trap, 10 sugar-baited ant trap and two decayed log samples) were pooled to 

obtain a single abundance value per species. Refer to Appendix C for a list of the 670 species 

collected in forest, fynbos and pine plantation. 

 

Baseline data for clear-felled sites 

To test the suitability of the selected ecological indicator taxa, eight additional sites in clear-

felled pine plantation were sampled at the same time, in the same areas, and following the 

same collecting procedures adopted in forest, fynbos and pine plantation. Refer to Appendix A 

for clear-felled site locations and to Appendix C for a list of the 309 species collected there. 

Clear-felled sites spanned a chronosequence from recently felled (less than one year before 

sampling) to earlier felled (over five years since felling) sites (Table 5.1 and Fig. 5.1). 

Verification tests of potential indicators should ideally be conducted on an independent 

data set, either collected in a different area, or at a different time (McGeoch, 1998; McGeoch et 

al., 2002). However, this is not always possible and depends on the nature of the disturbance. 

The plantations surrounding Table Mountain National Park targeted for clear-felling by 2025 are 

in Cecilia and Tokai Plantations. Therefore, a case study on these eastern slopes is appropriate 

for testing the indicators selected for monitoring restoration progress in fynbos. The indicators 

selected can be tested in the future once Cecilia and Tokai plantations have all been felled. 
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Table 5.1. Time-since-felling for the clear-felled pine plantation sites sampled in 2008/2009. 

 

Site Location Felling date Chronosequence category 

12 Rooikat Ravine, Cecilia May 2008 recently felled  
16 Spilhaus Ravine, Cecilia April 2008 recently felled  
19 Constantia Nek, Cecilia April 2008 recently felled  
20 Constantia Nek, Cecilia July 2006 over two years since felling 
23 Orange Kloof not confirmed* over two years since felling 
24 Orange Kloof not confirmed* over two years since felling 
28 Tokai N July 2007 over one year since felling 
32 Tokai S July 2003 over five years since felling 

* The Section Ranger indicated the number of years since felling. However, Orange Kloof is not part of the current 
felling schedule, so maps and exact dates were not available. 
 

 
 

Figure 5.1. Chronosequence of fynbos restoration: (a) mature pine plantation, (b) recently clear-

felled, (c) over two years since clear-felling, (d) over five years since clear-felling, (e) recovering 

Sandstone Fynbos and (f) undisturbed Sandstone Fynbos. Photographs taken during sampling. 

 

a b 

c d 

e f 
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Indicator selection analyses 

It is impractical to use all invertebrate taxa as ecological indicators for monitoring restoration 

progress. Therefore, a stepwise approach to indicator selection was adopted. First, taxa were 

omitted if they were considered incidental catches in this study, because they had extremely low 

species richness and abundance, or were not ground-dwelling in nature. This step eliminated 

Hymenoptera (bees only), Thysanura, Neuroptera, Mantodea, Phasmatodea and Thysanoptera 

from contention as suitable ecological indicators. The remaining ground-dwelling invertebrate 

taxa were scored using seven criteria that would render them suitable, or unsuitable, as 

potential indicator taxa. Each taxon was given a final score, calculated as the sum of scores for 

each of the seven criteria against which taxa were assessed. Final scores could range from 

zero (worst choice, or most unsuitable) to 14 (most suitable). Taxa were considered unsuitable 

ecological indicators if they are poorly known regionally, lack taxonomic expertise, are difficult to 

identify to species level, have either very low or very high species richness, occur in low 

abundance, are difficult to sample, and/or have few species unique to fynbos (low habitat 

fidelity). An additional set of criteria for selecting ecological indicators was compiled from the 

literature. The most suitable potential taxa were subjected to these new criteria to assess 

current local taxonomic knowledge on a globally relevant scale for monitoring restoration 

following disturbance. 

In addition to the coarse-filter approach of using higher taxa as indicators, a fine-filter 

approach of monitoring individual species is often recommended, because species may offer 

more reliable and predictable responses to habitat change (disturbance, restoration, etc.). The 

indicator value or IndVal method developed by Dufrêne & Legendre (1997) is a conceptually 

straightforward and robust technique for identifying suitable indicator species. IndVal combines 

data on the habitat specificity and fidelity of species, by taking into account the relative 

abundance of species and number of sites where the species occurs. Indicator species were 

identified using the programme IndVal version 2.1 for Windows, available free online (Dufrêne, 

2004). 

For each species i in each habitat j, Aij (the mean abundance of species i in the sites of 

habitat j compared to all habitats sampled) and Bij (the relative frequency of occurrence of 

species i in the sites of habitat j) were calculated as follows: 

specificity measure:  Aij = Nindividualsij ÷ Nindividualsi 

fidelity measure:  Bij = Nsitesij ÷ Nsitesj 

In the formula for Aij, Nindividualsij is the mean number of individuals of species i across sites of 

habitat j, while Nindividualsi. is the sum of the mean numbers of individuals of species i over all 
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habitats. The mean number of individuals in each habitat was used, instead of summing the 

individuals, because this removes any effect of the number of sites in the various habitats, and 

of differences in abundance among sites belonging to the same habitat. Aij is maximum when 

species i is only present in habitat j. In the formula for Bij, Nsitesij is the number of sites in habitat 

j where species i is present, while Nsitesj is the total number of sites in that habitat. Bij is 

maximum when species i is present in all sites of habitat j. For each species in each habitat, 

IndVal was then calculated as: 

IndValij = Aij x Bij x 100 

The indicator value of a species for a set of sites is the largest value of IndValij observed 

over all sites in that habitat. The IndVal index reaches a maximum (100%) when the individuals 

of a species are only recorded in one habitat and in all sites of that habitat. Therefore, species 

with strong habitat specificity (known as characteristic species) will have the highest index 

scores and be identified as indicators (Dufrêne & Legendre, 1997). Characteristic indicator 

species for a habitat are those with significant IndVal scores of over 70%. While characteristic 

species are good indicators of intact habitat, they may not always provide useful information on 

the direction of ecological change (McGeoch et al., 2002). Species with other combinations of 

specificity and fidelity (known as detector species) may prove more useful for monitoring habitat 

changes. Relative changes in the abundance of detector species across ecological states can 

indicate the direction in which change is occurring. Detector species are those with some 

degree of habitat preference, identified by IndVal scores of between 50% and 70%. 

Random reallocation of sites among habitat groups using 499 permutations and five 

seeds per random number generator was used to test the significance of the IndVals for each 

ant species collected. The significance level was set at p < 0.05. Good indicator species are 

those with high and significant IndVal percentages. IndVal was run for the 17 ant species 

collected, since ants were selected as the most suitable potential indicator taxon using a 

coarse-filter stepwise scoring approach. The hierarchy component of Dufrêne & Legendre’s 

(1997) method was not applied, because the habitat levels were known a priori. Ant species 

were tested against forest, pine plantation and the three fynbos ‘subtypes’ (Sandstone Fynbos, 

Granite Fynbos and recovering Sandstone Fynbos). IndVal was used to identify which species 

were most characteristic of intact habitats, and which could indicate transitional ecological 

states (e.g. recovering Sandstone Fynbos) for monitoring restoration progress in fynbos. 

 

Indicator verification analyses 
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The indicator taxon selected (ants) was verified by testing the ant community composition 

response to clear-felling. A Bray-Curtis dissimilarity matrix of log-transformed abundance data 

was used to map the interrelationships of ant communities in cluster analysis, using complete 

linkage clustering, and in ordination by non-metric multidimensional scaling (MDS), in PRIMER 

version 6 (Clarke & Gorley, 2006). Since the aim is to restore these clear-felled sites to fynbos, 

forest site data were omitted from these community composition analyses. For ants to prove 

useful as an indicator taxon, they should show progress towards restoration, with older clear-

felled sites clustering closer to fynbos sites than to pine plantation sites, thereby displaying more 

typical fynbos ant communities. 

The potential ecological indicator species identified were tested using IndVal. All 17 ant 

species were scored against the felling chronosequence. Since the intention is to restore these 

clear-felled sites to fynbos, forest site data were omitted from these IndVal analyses. Random 

reallocation of sites among habitat classes using 499 permutations and five seeds per random 

number generator was used to test the significance of the IndVals for each ant species 

collected. The significance level was set at p < 0.05. 

 

Results 

 

Indicator selection using a stepwise, coarse-filter approach 

Of the 92 109 individual invertebrates from 670 species collected in forest, fynbos and pine 

plantation, 27 higher taxa (mostly orders) were collected in sufficient numbers to be considered 

representative of the ground-dwelling invertebrate community, rather than as incidental catches. 

Nine additional families from diverse orders (Araneae, Orthoptera, Hemiptera and Coleoptera) 

were included in this assessment, because they were considered relatively well studied locally. 

Cockroaches and ants were identified as the most suitable potential ecological indicator taxa for 

monitoring restoration progress in fynbos (Table 5.2). Ground beetles (Carabidae), assassin 

bugs (Reduviidae) and darkling beetles (Tenebrionidae) also showed potential as ecological 

indicators in fynbos (Table 5.2). Ants performed better than cockroaches when subjected to a 

list of criteria commonly applied to ecological indicator taxa selection for monitoring (Table 5.3). 
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Table 5.2. Criteria for selection or exclusion of invertebrate taxa considered suitable ecological indicators in fynbos. For all criteria, a 

zero score is the least suitable. Taxa with the highest final scores are considered most suitable as potential ecological indicators for 

monitoring restoration progress in fynbos. 

 

Taxon 
Taxonomic 
handicap

1
 

Estimated 
species richness 
in fynbos

2
 

General 
abundance 
in fynbos

3
 

Ease of 
sampling

4
 

Species richness 
in the fynbos 
sites sampled

5
 

Total abundance 
in the fynbos 
sites sampled

6
 

Habitat fidelity 
in the sites 
sampled

7
 

Final 
score 

Blattodea 
(cockroaches) 

3 0 (high) 2 (high) 2 (high) 2 2 2 13 

Hymenoptera  
(ants) 

3 0 (high) 2 (high) 2 (high) 2 2 0 (very low) 11 

Carabidae  
(ground beetles) 

3 1 (medium) 0 (low) 2 (high) 2 1 (low) 1 (low) 10 

Reduviidae 
(assassin bugs) 

3 1 (medium) 0 (low) 1 (medium) 1 (too low) 2 2 10 

Tenebrionidae 
(darkling beetles) 

2 (well known, 
identification) 

1 (medium) 0 (low) 2 (high) 2 2 0 (very low) 9 

Hymenoptera 
(wasps) 

2 (well known, 
specialist) 

0 (high) 2 (high) 1 (medium) 2 (too high) 1 (low) 0 (very low) 8 

Araneae  
(spiders) 

2 (well known, 
specialist) 

0 (high) 1 (medium) 1 (medium) 0 (far too high) 2 2 8 

Chilopoda 
(centipedes) 

3 1 (medium) 0 (low) 1 (medium) 2 1 (low) 0 (very low) 8 

Diplopoda 
(millipedes) 

2 (well known, 
specialist) 

1 (medium) 0 (low) 2 (high) 2 1 (low) 0 (very low) 8 

Gastropoda  
(snails) 

3 1 (medium) 0 (low) 2 (high) 1 (too low) 1 (low) 0 (very low) 8 

Gryllidae  
(crickets) 

2 (specialist, 
identification) 

1 (medium) 1 (medium) 1 (medium) 1 (too low) 2 0 (very low) 8 

Hemiptera  
(all bugs) 

1 (well known) 0 (high) 2 (high) 1 (medium) 1 (too high) 1 (low) 2 8 
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Taxon 
Taxonomic 
handicap

1
 

Estimated 
species richness 
in fynbos

2
 

General 
abundance 
in fynbos

3
 

Ease of 
sampling

4
 

Species richness 
in the fynbos 
sites sampled

5
 

Total abundance 
in the fynbos 
sites sampled

6
 

Habitat fidelity 
in the sites 
sampled

7
 

Final 
score 

Coleoptera  
(all beetles) 

2 (well known, 
specialist) 

0 (high) 2 (high) 2 (high) 0 (far too high) 2 0 (very low) 8 

Collembola 
(springtails) 

1 (specialist) 1 (medium) 2 (high) 1 (medium) 2 1 (low) 0 (very low) 8 

Acari  
(mites) 

0 0 (high) 2 (high) 1 (medium) 2 2 0 (very low) 7 

Amphipoda 
(landhoppers) 

3 0 (low) 1 (medium) 2 (high) 1 (too low) 0 (very low) 0 (very low) 7 

Anostostomatidae 
(king crickets) 

3 1 (medium) 0 (low) 1 (medium) 1 (too low) 1 (low) 0 (very low) 7 

Diptera  
(flies) 

0 0 (high) 2 (high) 1 (medium) 1 (too high) 2 1 (low) 7 

Gastropoda  
(slugs) 

3 0 (low) 0 (low) 2 (high) 1 (too low) 1 (low) 0 (very low) 7 

Orthoptera 
(grasshoppers etc.) 

1 (well known) 0 (low) 1 (medium) 1 (medium) 2 2 0 (very low) 7 

Scarabaeidae 
(dung beetles) 

3 0 (low) 0 (low) 2 (high) 1 (too low) 1 (low) 0 (very low) 7 

Scorpiones 
(scorpions) 

3 0 (low) 0 (low) 1 (medium) 1 (too low) 2 0 (very low) 7 

Solifugae  
(sun-spiders) 

3 1 (medium) 0 (low) 0 (low) 1 (too low) 0 (very low) 2 7 

Stenopelmatidae 
(sand crickets) 

3 1 (medium) 0 (low) 0 (low) 1 (too low) 0 (very low) 2 7 

Lepidoptera 
(moths) 

1 (well known) 0 (high) 2 (high) 0 (low) 1 (unidentified) 1 (low) 1 (unknown) 6 

Opiliones 
(harvestmen) 

2 (well known, 
identification) 

1 (medium) 0 (low) 2 (high) 1 (too low) 0 (very low) 0 (very low) 6 

Psocoptera 
(psocids) 

1 (specialist) 1 (medium) 0 (low) 1 (medium) 2 1 (low) 0 (very low) 6 
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Taxon 
Taxonomic 
handicap

1
 

Estimated 
species richness 
in fynbos

2
 

General 
abundance 
in fynbos

3
 

Ease of 
sampling

4
 

Species richness 
in the fynbos 
sites sampled

5
 

Total abundance 
in the fynbos 
sites sampled

6
 

Habitat fidelity 
in the sites 
sampled

7
 

Final 
score 

Archaeognatha 
(bristletails) 

2 (well known, 
specialist) 

0 (low) 0 (low) 0 (low) 1 (too low) 0 (very low) 2 5 

Haplotaxida 
(earthworms) 

1 (well known) 1 (medium) 1 (medium) 0 (low) 1 (unidentified) 0 (very low) 1 (unknown) 5 

Migidae  
(trapdoor spiders) 

3 0 (low) 0 (low) 0 (low) 1 (too low) 0 (very low) 1 (low) 5 

Onychophora 
(velvet worms) 

2 (well known, 
specialist) 

0 (low) 0 (low) 0 (low) 1 (too low) 0 (very low) 2 5 

Isopoda  
(woodlice) 

0 0 (high) 0 (low) 1 (medium) 1 (too low) 2 0 (very low) 4 

Dermaptera 
(earwigs) 

1 (specialist) 1 (medium) 0 (low) 0 (low) 1 (too low) 0 (very low) 1 (low) 4 

Pseudoscorpiones 
(pseudoscorpions) 

0 0 (high) 0 (low) 0 (low) 1 (too low) 2 0 (very low) 3 

Tricladida 
(flatworms) 

0 0 (low) 0 (low) 0 (low) 1 (too low) 0 (very low) 0 (very low) 1 

 
1 Calculated as the sum of three criteria: well-known regionally, specialist identified and/or available, and species level identification possible. 
2 Taxa with either very low or very high species richness in fynbos throughout the region considered unsuitable indicators, based on expert opinion (M. Picker). 
3 Taxa with either very low or very high abundance in fynbos throughout the region considered unsuitable indicators, based on expert opinion (M. Picker). 
4 Refers to practicality of collecting methods required and adequate representation in samples. Rare or difficult to find taxa are considered unsuitable indicators. 
5 Based on data collected in this study and scored as: 1 (too low) if ≤ 5 species, 1 (too high) if > 25 species, and 0 (far too high) if > 100 species. 
6 Based on data collected in this study and scored as: low if < ½ total abundance collected in forest, and very low if < 10 individuals collected. 
7 Based on data collected in this study and scored as: low if most/all species collected in forest and fynbos, and very low if most/all species in all three habitats. 
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Table 5.3. Criteria for using terrestrial invertebrates as ecological indicators for monitoring 

restoration progress in fynbos following disturbance (clear-felling pine) on the Cape Peninsula. 

 

Suitability criteria Cockroaches Ants 

Species level identification possible 3,4 * Species list in prep. Unpublished species 
list available 

Distribution, richness and abundance known 3,4 * Yes Yes 

Well known taxonomy and life history 2,4 * Yes Yes 

Sampling and processing practicality 2,3,5 * Fairly high High 

High ecological or habitat fidelity 4 * Certain species Certain species 

Sampling and monitoring methods published 
and used frequently in monitoring 5 

Not used frequently Pitfall traps and bait 
cards 

Baseline data on biology available 2 Limited  Fairly good 

Functional importance in ecosystems 3 Decomposition Wide range 

Sensitivity to environmental change 1,3 Poorly known Well documented 

Distinguish between natural population fluctuations 
and human induced disturbance 1,2,3 

Requires further study Functional group 
predictions possible 

Sampled individuals expendable 
(won't hinder restoration progress) 2 

Yes – few rare species Yes – most species in 
large colonies 

Representative of related and unrelated taxa 2,3 Requires further study Demonstrated 
elsewhere 

Potential for collaboration between researchers 
and protected area managers 5 

Limited: taxonomists 
overseas 

High: local expertise 
and interest 

Species of special (conservation) concern: 
IUCN Red List, endemic or other significance 5 

Cape Peninsula 
endemics 

Invasive alien species 

Cost efficient (time, funds and personnel) 1,2 Maybe Yes 

 

1 Noss, 1990 
2 McGeoch, 1998 
3 Andersen, 1999 
4 Summerville et al., 2004 
5 McGeoch et al., 2011 

* Assessed in Table 5.2 
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Indicator selection using IndVal 

Pheidole capensis scored a highly significant IndVal of 99.83%, suggesting that it is the most 

characteristic indicator species in Granite Fynbos (Table 5.4). P. capensis was abundant at both 

Granite Fynbos sites, while absent, or collected in very low abundance (less than five 

individuals), at the other 21 sites. Camponotus bertolinii and Camponotus sp. 1 (maculatus 

group) are also potentially good indicator species in Granite Fynbos, with highly significant 

IndVals of 85.39% and 76.51% respectively (Table 5.4). Although all other ant species showed 

non-significant IndVals, Tetramorium sp. has potential as an indicator species in Sandstone 

Fynbos, and Crematogaster sp., Meranoplus sp. and Camponotus sp. 2 (maculatus group) have 

potential as detector species in Granite Fynbos. Interestingly, Linepithema humile (Argentine 

ant) best indicated recovering fynbos, with an IndVal of 32.72%. 

 

Table 5.4. Indicator values (Dufrêne & Legendre, 1997) for the 17 ant species collected in 

forest, fynbos and pine plantation. Shaded species are potentially suitable as detector species 

(light grey, IndVal 50-70%) or characteristic indicator species (dark grey, IndVal > 70%). 

 

Ant species IndVal (%) Habitat Mean ± SD p (0.05) 

Tetramorium grassii 34.60 pine plantation 10.07 0.74 NS 

Lepisiota capensis 29.52 pine plantation 19.41 1.08 NS 

Tetramorium sp. 70.09 Sandstone Fynbos 19.05 0.94 NS 

Camponotus niveosetosus 38.80 Sandstone Fynbos 18.19 0.32 NS 

Monomorium sp. 33.77 Sandstone Fynbos 8.14 0.31 NS 

Myrmicaria nigra 22.47 Sandstone Fynbos 16.49 0.28 NS 

Technomyrmex pallipes 19.24 Sandstone Fynbos 18.37 0.90 NS 

Pheidole capensis 99.83 Granite Fynbos 15.89 4.42 ** 

Camponotus bertolinii 85.39 Granite Fynbos 17.02 2.39 ** 

Camponotus sp. 1 (maculatus group) 76.51 Granite Fynbos 15.08 3.07 ** 

Crematogaster sp. 67.57 Granite Fynbos 15.30 2.10 NS 

Meranoplus sp. 58.96 Granite Fynbos 13.63 2.14 NS 

Camponotus sp. 2 (maculatus group) 52.11 Granite Fynbos 16.41 0.00 NS 

Tapinoma sp. 41.31 Granite Fynbos 14.26 0.91 NS 

Hagensia peringueyi 22.46 Granite Fynbos 15.26 0.39 NS 

Tetraponera sp. 35.37 recovering fynbos 14.88 0.08 NS 

Linepithema humile 32.72 recovering fynbos 12.31 0.30 NS 
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Baseline data for clear-felled sites 

In total, 20 295 individual invertebrates representing 309 ground-dwelling invertebrate species 

were collected at the eight clear-felled sites sampled, 58 of which were unique to clear-felled 

sites (mostly singletons). This brought the total number of individuals collected in all four 

habitats to 112 404, representing 728 species. Almost all higher taxa collected at other sites 

were represented at clear-felled sites. One velvet worm (a single individual of Peripatopsis 

stelliporata), eight spider, one cricket (Gryllus bimaculatus), seven bug, 16 beetle, nine fly and 

16 wasp species were unique to clear-felled sites. Since ants were the indicator taxon selected, 

no statistical analyses were performed on other invertebrate taxa for these clear-felled sites. 

 

Indicator verification 

Native ant communities were separated into two broad MDS clusters (black circles in Fig. 5.2), 

with only 22.3% similarity between them, based on the complete linkage cluster analysis. One 

cluster comprised all mature Sandstone Fynbos (Sites 10, 14, 17 and 26), Granite Fynbos 

(Sites 6 and 8) and clear-felled sites of over two years since felling (Sites 20, 23 and 24). The 

other broad cluster comprised all pine plantation sites, recovering fynbos (Sites 3 and 30), 

recently felled (Sites 12, 16 and 19) and the oldest felled site (Site 32). Clear-felled Site 28 

appeared to be an outlier, possibly because baboons destroyed four sugar-baited ant traps and 

five pitfall traps at this site. 

Clusters were further subdivided with 55.5% similarity (smaller grey circles in Fig. 5.2). 

Granite Fynbos sites (Sites 6 and 8) clustered separately from Sandstone Fynbos and clear-

felled sites. The clear-felled site of over two years since felling at Constantia Nek (Site 20) 

clustered separately from those of a similar age at Orange Kloof (Sites 23 and 24). The three 

subdivisions within the broad cluster comprising pine plantation, recovering fynbos and other 

clear-felled sites were not as clearly separated. The three recently felled sites appear to have 

retained their pine signature, clustering amongst the pine plantation sites. These recently clear-

felled sites had sparse ground cover and shrubs, compared to other clear-felled and fynbos 

sites. By comparison, the oldest clear-felled site (Site 32) had the densest vegetation of all 

clear-felled sites, was moribund and invaded by tree species and large shrubs not typical of 

fynbos. As expected, Site 32 clustered close to the recovering fynbos sites. 
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Figure 5.2. Ordination from non-metric multidimensional scaling (MDS), applied to a Bray-Curtis 

dissimilarity matrix of log-transformed community composition amongst sites for all 17 ant 

species. Black circles represent 22.3% similarity and smaller grey clusters 55.5% similarity 

amongst sites. 

 

Of the 17 ant species recorded, only Tapinoma sp. was not collected in any of the clear-

felled sites. Pheidole capensis and Camponotus bertolinii, the ant species identified as 

characteristic indicators of Granite Fynbos, were collected in very low numbers (four and two 

individuals respectively in total) in clear-felled sites. Both species were again identified as 

characteristic indicator species in Granite Fynbos, with highly significant IndVals of 99.55% for 

P. capensis and 88.83% for C. bertolinii (Table 5.5). Tetramorium sp. scored a high (albeit non-

significant) IndVal of 85.43% for clear-felled sites of over two years since felling (Table 5.5). 

Since Tetramorium sp. was previously identified as a potential characteristic indicator species 

for Sandstone Fynbos (Table 5.4), it must now be rejected as an indicator species for 

Sandstone Fynbos because of this inconsistent result. Crematogaster sp. and Meranoplus sp. 

were still most indicative of Granite Fynbos, but Camponotus sp. 2 (maculatus group) now best 

represented Sandstone Fynbos and therefore must also be rejected as an indicator species. 

Tetraponera sp. and Linepithema humile (Argentine ant) were again most indicative of 

recovering fynbos (Table 5.5). 
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Table 5.5. Indicator values (Dufrêne & Legendre, 1997) for the 17 ant species collected in pine 

plantation, fynbos and clear-felled sites to verify the indicator species previously selected. 

Shaded species are potentially suitable as characteristic indicator species (IndVal > 70%). 

 

Ant species IndVal (%) Habitat Mean ± SD p (0.05) 

Monomorium sp. 52.28 pine plantation 8.10 2.33 ** 
Tetramorium sp. 85.43 felled >2 years ago 21.28 1.29 NS 
Tetraponera sp. 32.77 recovering fynbos 17.03 0.25 NS 
Linepithema humile 29.95 recovering fynbos 9.60 0.64 NS 
Technomyrmex pallipes 61.70 Sandstone Fynbos 23.05 0.74 NS 
Camponotus sp. 2 (maculatus group) 53.09 Sandstone Fynbos 19.35 0.24 NS 
Camponotus niveosetosus 46.33 Sandstone Fynbos 18.27 0.09 NS 
Lepisiota capensis 31.43 Sandstone Fynbos 17.99 0.95 NS 
Myrmicaria nigra 29.44 Sandstone Fynbos 19.19 0.43 NS 
Hagensia peringueyi 21.87 Sandstone Fynbos 15.18 0.75 NS 
Pheidole capensis 99.55 Granite Fynbos 21.47 2.60 ** 
Camponotus bertolinii 88.83 Granite Fynbos 20.03 2.00 ** 
Crematogaster sp. 54.62 Granite Fynbos 17.89 1.00 NS 
Camponotus sp. 1 (maculatus group) 53.83 Granite Fynbos 16.65 1.04 NS 
Meranoplus sp. 46.66 Granite Fynbos 17.83 0.50 NS 
Tapinoma sp. 41.77 Granite Fynbos 19.17 0.21 NS 
Tetramorium grassii 23.02 Granite Fynbos 4.60 0.83 NS 
 

Discussion 

 

The final scores assigned during indicator selection depend on the criteria chosen and score 

category range. Several criteria are subjective, while criteria that depend on collected data are 

influenced by the choice and vagaries of the sites sampled. The rank order of taxa is thus likely 

to differ, depending on the opinion and experience of the researchers assigning the scores, and 

on the region in question. Notwithstanding these limitations, this approach, when combined with 

a case-study to test the selected ecological indicator taxa, is more pragmatic than continuing to 

ignore or exclude invertebrates in monitoring programmes. Indicator selection criteria can save 

time and money that might otherwise be wasted studying and monitoring taxa that are not 

suitable candidates (McGeoch, 1998). 

Ants, both as a higher taxon (family) and as individual species, appeared to be the most 

suitable ground-dwelling invertebrates to use as ecological indicators for monitoring restoration 

progress in fynbos on the eastern slopes of the Table Mountain range (Tables 5.2-5.5). Ants 

were recently identified as the most suitable terrestrial invertebrate taxon for inclusion in 
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protected area monitoring programmes in South Africa (McGeoch et al., 2011). Ants are also by 

far the most commonly used invertebrate taxon in indicator studies throughout Australia and in 

parts of North and South America, Europe and Asia (Majer et al., 2007). Compared to most 

other ground-dwelling invertebrate taxa, ants are easily collected and readily identifiable, 

making them suitable indicator taxa for monitoring (Andersen & Sparling, 1997; Summerville et 

al., 2004). 

Biodiversity inventories are a vital first step in any monitoring programme (Rohr et al., 

2007; Engelbrecht, 2010). Although the species and higher taxon richness was high (728 

species across all four habitats), many of the species collected in this study have little value for 

baseline data for future monitoring, because as morphospecies, they were not identified even to 

family or genus level. Roughly 20% of the species collected were not checked or identified 

further by a taxonomic expert, as taxonomists were not available for all taxa collected. 

Consequently, some unknown degree of identification error was inevitable in these data, with 

accuracy dependent on prior experience with different taxa and the availability of identification 

keys. Any error in identifications should, however, be consistent across habitats. Only a fairly 

low percentage of South African terrestrial invertebrates have been described taxonomically, so 

taxonomic impediments are inevitable for all but the best-surveyed taxa. This impediment 

affects community studies involving a range of taxa. The vast majority of invertebrate taxa are 

too poorly known and difficult to identify to be useful or practical for monitoring (Kremen et al., 

1993; New, 1999b). 

Despite the taxonomic limitations for other taxa, these baseline data on ant community 

composition did, to a degree, reflect the chronosequence of time-since-felling. The MDS 

ordination (Fig. 5.2) suggests that there is restoration progress over time (the ant communities 

of sites felled over two years previously is more similar to mature fynbos than are recently clear-

felled sites). Repeated monitoring of the same sites over time will confirm the suitability of the 

indicator species selected. However, succession can be hampered if a site is not managed and 

becomes invaded and dominated by alien plants. Monitoring the relative positions of ant 

communities in sites undergoing restoration in relation to mature pine plantations and 

undisturbed fynbos control sites on ordination scatterplots over time can provide a measure of 

restoration progress (Pik et al., 2002). However, this ant community composition analysis also 

suggests that vegetation type and age (time-since-felling) alone are insufficient to explain 

restoration progress in fynbos (Fig. 5.2). The proportions of bare ground, groundcover and 

shrubs, fire history and presence of invasive alien species, especially Argentine ants, are likely 

to be equally important drivers of invertebrate community composition. Furthermore, and 
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contrary to prediction, ant community composition in the oldest felled site (over five years before 

sampling) was not more similar to fynbos sites than to pine plantation sites. This site would 

benefit from being burnt, as it is densely invaded by alien grasses and other non-fynbos plants. 

Clear-felling of pine plantations is only the first stage of rehabilitation on the Cape Peninsula. 

The time scale necessary to observe full floral recovery of fynbos after clear-felling is of 

the order of several fire cycles and thus several decades (Holmes & Richardson, 1999), far 

beyond the scope of this study, or similar previous studies (e.g. Pryke & Samways, 2009). For 

this reason, most studies (including this one) adopt the chronosequence approach of comparing 

sites of different ages at a single point in time in order to infer how succession or colonisation 

might take place over time. This chronosequence approach has inherent problems, many of 

which relate to the vagaries of sites (Majer, 2009). As is often the case with biological field 

studies, uncontrolled factors confounded the interpretation of patterns in these data. For 

example, baboons destroyed four ant traps and five pitfall traps (almost half of the traps set) at 

clear-felled Site 28, and one ant trap and two pitfall traps in the adjacent pine plantation Site 27. 

These sites are consequently not strictly comparable with other, undisturbed fynbos sites, 

because data from all replicates were pooled to calculate species richness and abundance at 

each site. 

Restoration practitioners often assume that if plant communities are restored, 

invertebrate communities will return to the undisturbed condition, but this is not always the case 

(Longcore, 2003; Babin-Fenske & Anand, 2010). Longcore (2003) found that arthropod 

communities in restored coastal sage scrub in California did not closely resemble arthropod 

communities at undisturbed sites, regardless of time elapsed since vegetation was established. 

Instead, restored sage scrub sites were considered “depauperate imitations” that supported 

lower arthropod diversity and more alien species. Pryke & Samways (2009) found that 

undisturbed fynbos on the Cape Peninsula supported higher invertebrate species richness than 

fynbos restoration sites where pine plantations had been removed within the previous five 

years. Although no significant differences in invertebrate species richness between undisturbed 

and recovering fynbos were detected in this study, this finding does not imply that restoration is 

complete, or that invertebrate communities have fully re-established in clear-felled sites. Rather, 

it emphasises the danger in relying on species richness alone as a measure of restoration 

progress or success. 

This study did not attempt to establish the robustness of the indicator taxa selected by 

developing and testing appropriate hypotheses under different conditions (different areas or at 

different times). Exhaustive hypothesis testing defeats the purpose of selecting indicators in the 
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first place – to save time and money in answering pressing conservation questions (McGeoch, 

1998). This study also did not attempt to show correlation between restoration progress and ant 

species richness, or between ant species richness and the species richness of other 

invertebrates. While species richness may be an appropriate measure for some taxa, this does 

not always hold for ants. Ant species richness can remain relatively stable, even when major 

compositional changes take place (Kaspari & Majer, 2000). Ant species richness can also 

respond to habitat changes in unpredictable ways that are often case-specific, and therefore 

difficult to interpret (Andersen, 2010). Most ant-monitoring programmes therefore focus on 

community composition changes (Kaspari & Majer, 2000; Andersen, 2010). Since ant 

communities respond to ecosystem disturbance and reflect ecosystem changes, ants are widely 

used in monitoring faunal changes associated with mine restoration, agriculture and livestock 

grazing (Andersen, 1997b; 1999; 2010). 

Not all of the potential indicator species identified in IndVal from forest, fynbos and pine 

plantation sites (Table 5.4) held as good indicators when tested using the clear-felled sites 

(Table 5.5). Only those species identified in the initial selection as good indicators of mature, 

intact fynbos habitat, and that were still scored as such when clear-felled sites were added to 

the comparison, are recommended for future use in monitoring restoration progress in fynbos. 

Although this limited the number of candidate indicator species to two (Pheidole capensis and 

Camponotus bertolinii), this is not necessarily a problem. Both can be easily and reliably 

identified to species level, even by non-experts, so these species are well-suited to be 

incorporated into a rapid assessment monitoring programme in fynbos. 

This test of the selected indicator species also highlights the importance of using fine-

filter features, such as invasive alien species (Noss, 1990). Habitat disturbance has been shown 

to facilitate community invasion and subsequent competitive dominance by invasive ants in 

various ecosystems (Christ, 2009). Argentine ants are known to reduce native ant diversity (e.g. 

Holway, 1998) and to replace dominant native ants (Bond & Slingsby, 1984). Elsewhere in the 

fynbos, P. capensis is displaced or eliminated by Argentine ants (De Kock & Giliomee, 1989; 

Christian, 2001; Witt et al., 2004). Therefore, invasion by Argentine ants at sites undergoing 

restoration could hamper restoration efforts. 

At present, undisturbed Granite and Sandstone Fynbos in Table Mountain National Park 

do not appear to be heavily invaded by Argentine ants. However, Argentine ants were abundant 

in both recovering fynbos and clear-felled sites (apart from the three most recently felled sites). 

Pryke & Samways (2009) also recorded significantly higher abundance of Argentine ants in 

recovering fynbos than in mature fynbos, Afrotemperate forest, or pine plantation on the Cape 
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Peninsula. They suggest that this may only be temporary, with Argentine ant abundance likely 

to decline as recovering fynbos sites undergo succession to mature fynbos. Confirmation of this 

requires regular monitoring, since the invasion and colony establishment of Argentine ants can 

lead to biotic homogenisation (Holway & Suarez, 2006) and community disassembly (Sanders 

et al., 2003). In a study of coastal sage scrub restoration, Longcore (2003) concluded that ants 

were not suitable ecological indicators, because Argentine ants had invaded all sites and 

reduced native arthropod diversity. However, for this very reason, ants should be considered as 

indicators. In addition, a goal of restoration should be to eliminate Argentine ants and other alien 

invertebrates as restoration proceeds, allowing the native community to re-establish. 

 

Conclusion 

It will be important to monitor ants over time, at both fine and coarse scales, because invasive 

alien Argentine ants display a dynamic invasion front, with seasonal and annual fluctuations. 

Their apparent absence in pristine fynbos in Table Mountain National Park needs to be 

confirmed, and further researched, as this has implications for their control. Monitoring of 

restoration progress post-felling should therefore focus on the Argentine ant, Pheidole capensis 

and Camponotus bertolinii. The latter two species, verified as characteristic indicators for 

Granite Fynbos (Table 5.5), should be used for monitoring fynbos restoration progress, because 

their presence in clear-felled sites could indicate restoration success. Monitoring invasive alien 

species, especially Argentine ants, is also important in other Mediterranean-climate regions. 
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CHAPTER 6. IMPLICATIONS OF PLANTING AND FELLING PINE FOR GROUND-

DWELLING INVERTEBRATES ON THE CAPE PENINSULA 

 

Implications of planting pine for ground-dwelling invertebrates 

 

This study adds to the growing body of evidence showing that exotic plantations have lower 

species richness and different community assemblages, compared to neighbouring native 

forest, in South Africa and globally. These findings follow the global trend of lower biodiversity in 

plantations compared to natural forests (Stephens & Wagner, 2007). More importantly, alien 

pine plantations on the Cape Peninsula may also have negative impacts on the fynbos-

specialist invertebrate community, whose available habitat has diminished through afforestation. 

These pine plantations have both direct effects on fynbos invertebrate communities, through 

habitat-replacement, and indirect effects, through negative on-site and off-site effects. 

The pine plantations sampled in this study hold low conservation value in this landscape. 

Compared to Afrotemperate forest and fynbos, pine plantations supported much lower 

invertebrate abundance, fewer unique species, only one Cape Peninsula endemic species, 

about the same number of alien invertebrate species, and exhibited lower species turnover 

(beta diversity). The current pine plantation litter community had a closer resemblance to 

Afrotemperate forest, than to the original Granite Fynbos community, which was displaced by 

the pine plantations. Community composition results (Chapter 3) suggest that most Granite 

Fynbos specialist invertebrate species do not survive under pine plantations, and that, due to 

afforestation, much of the true Peninsula Granite Fynbos invertebrate community may already 

be lost from this ‘Endangered’ vegetation type. This likely includes the loss of some Cape 

Peninsula endemic species, and others that are consequently under threat at the regional scale. 

Of the nine Cape Peninsula endemic invertebrate species identified (Chapter 3), the 

scorpion Uroplectes insignis was the only endemic collected in pine plantation, and then only in 

Newlands Forest. This implies that pine plantations do not provide suitable surrogate habitat for 

Cape Peninsula endemic species, many of which are Afrotemperate forest litter specialists, 

aquatic or cave-dwelling (Picker & Samways, 1996). These plantations are also not known to 

harbour any other invertebrate species of conservation concern (i.e. IUCN Red Listed species). 

Plantations often support few forest specialist invertebrate species (Magura et al., 2000), even 

though they may offer habitat reservoirs for some endangered species (Brockerhoff et al., 

2005). While plantations on the Cape Peninsula are known to act as ‘surrogate habitat’ for 

components of the native Southern Afrotemperate Forest fauna (Ratsirarson et al., 2002; 
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Raharinjanahary, 2007), they offer only temporary habitat for forest-adapted invertebrates, 

because plantations are harvested and replanted on a regular basis (roughly every 30-35 

years). 

Pine plantation is a fairly uniform, artificial habitat, and is dominated by widespread, 

generalist species, so lower species turnover compared to native habitats was expected and 

recorded (Chapter 3). High species turnover (beta diversity) for epigaeic invertebrates has 

previously been reported in fynbos on Table Mountain (Pryke & Samways, 2010), and in 

Afrotemperate forest in the Drakensberg mountains, where turnover ranged from complete to 

50%, even between forest patches within the same valley (Hamer & Slotow, 2009; Uys et al., 

2009). 

 

Implications of alien invertebrate species invasions for native invertebrate taxa 

 

Invasive alien species are the second leading cause of global biodiversity loss (Wilcove et al., 

1998; Simberloff, 2001). Thus, in a National Park of World Heritage Status with globally 

significant biodiversity, it is a conservation priority to identify alien animals and assess their 

potential threat to the native biodiversity. The 19 alien invertebrate species identified in this 

study comprised the Argentine ant (Linepithema humile), four slug and eight snail species, the 

Portuguese millipede (Ommatoiulus moreleti), the Rough woodlouse (Porcellio scaber), three 

springtail species, and the European wasp (Vespula germanica) (Chapters 3 and 4). This 

number has almost certainly been underestimated, because most taxa were only identified to 

morphospecies level and the South African terrestrial alien fauna remains poorly known for most 

invertebrate taxa (other than ants and molluscs) (Picker & Griffiths, 2011). 

Fifteen of the 19 alien invertebrate species were collected in pine plantation, compared 

to 16 in forest and 11 in fynbos (Chapter 3). Over half of these alien invertebrate species were 

present in all habitats, and probably represent generalist species. The opportunistic, highly 

invasive Argentine ant was present at 16 of the 23 sites sampled in all habitats. It is not yet clear 

whether, or how, Argentine ants, or indeed any of the other alien invertebrate species collected, 

interact with alien trees to impact native invertebrate diversity. 

Unlike for Argentine ants (see Luruli, 2007), most of the distribution and spread data for 

these 18 non-ant alien invertebrate species in South Africa are anecdotal. This study collected 

spatial data only, but temporal data are required to investigate the rates of spread of alien 

invasions. Only one model of potential spread of an alien invertebrate in the Western Cape 

Province (European wasp: Tribe & Richardson, 1994) has been published. This model may be 
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outdated, since better data and models of predicted climate change are now available. The 

model is almost not really applicable to the sites sampled in this study, because it is for spread 

away from the Cape Peninsula. The model is also unlikely to be applicable to other alien 

invertebrates, because they differ in their life history traits and environmental tolerances. 

Particular attention should be paid to carnivorous alien species, including the Brown field slug 

(Deroceras panormitanum), Draparnaud’s glass snail (Oxychilus draparnaudi) and the 

European wasp (Vespula germanica), each of which could, as they have done elsewhere, 

potentially negatively impact native invertebrate diversity trophically or through interference 

competition. 

The comparative approach adopted here (Chapter 4) provides no evidence for the 

displacement and impoverishment of native ground-dwelling ant, or other invertebrate, 

populations and communities. Argentine ant invasion on the Cape Peninsula does not appear to 

have negatively impacted native ant or other invertebrate communities. For ants, no clear 

differences in alpha or beta diversity, functional group composition or co-occurrence patterns 

were evident with Argentine ant invasion. Similarly, the species richness, abundance and 

community composition of corresponding native taxa does not appear to be driven by the 

presence-absence of these 18 non-ant alien species. Habitat structure and disturbance history 

offers a more parsimonious explanation for the trends observed, particularly in fynbos. 

Maintaining the natural habitat heterogeneity through appropriate management is thus important 

for invertebrate conservation in Table Mountain National Park, as well as across the Cape 

Floristic Region. 

 

Implications of felling pine for ground-dwelling invertebrates 

 

After original vegetation clearing, clear-fell harvesting causes the most extreme disturbance 

event in plantation forestry (Pawson et al., 2005), especially under intensified forestry and 

effective fire suppression (Niemelä et al., 1993). Clear-felling radically changes the microclimate 

conditions of an area in terms of temperature, wind speed, relative humidity, evaporation and 

solar radiation (Chen et al., 1995). As a consequence, recently (two-year-old) clear-felled sites 

often temporarily support equal or higher invertebrate species richness than surrounding mature 

plantations, or native forest (Niemelä et al., 1993; Pawson et al., 2009). This initial elevated 

species richness is a result of colonisation by open-habitat specialist species, which often 

dominate clear-fell sites, in addition to the short-term survival of species that colonised the 

plantation prior to felling (Pawson et al., 2005). While species richness may not be negatively 
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affected by harvesting, mature forest specialists and especially the litter fauna, often do not 

persist and fail to recolonise (Niemelä et al., 1993). 

Commercial pine plantations in South Africa are mostly planted in ‘same age’ 

compartments and clear-fell harvested when mature, with roughly 30-35 years between planting 

cycles. In Tokai and Cecilia Plantations, the current management plan is to harvest the majority 

of plantations over a 20-year period up to 2025, and then not to replant them. Management of 

this land was transferred from Mountain to Ocean (MTO) Forestry Pty (Ltd) to South African 

National Parks (SANParks) in April 2005, and the land (roughly 1000 ha, of which 600 ha are 

covered by plantations) has been incorporated into Table Mountain National Park, since this 

land is of high conservation value (SANParks, 2009). 

The ecosystem restoration that is taking place through land acquisition and alien 

clearing in Table Mountain National Park requires careful monitoring to ensure natural patterns 

and processes are restored. The time scale necessary to observe full recovery of fynbos after 

clear-felling of pine plantations spans several fire cycles and hence several decades (Holmes & 

Richardson, 1999), far beyond the scope of this study, or similar previous studies (e.g. Pryke & 

Samways, 2009b). Therefore, the chronosequence approach (i.e. space for time substitution) 

was adopted, by comparing eight different aged clear-felled sites sampled at the same time, in 

order to infer how succession or colonisation might take place over time (Chapter 5). 

Pine plantations replaced Peninsula Granite Fynbos across the eastern slopes of the 

Table Mountain range, and the management aim is to restore this ‘Endangered’ vegetation type. 

If plantations in areas such as Tokai are not harvested and restored to fynbos, South Peninsula 

Granite Fynbos could be uplisted to ‘Critically Endangered’ (SANParks, 2009). The problem is 

that very little Peninsula Granite Fynbos remains, especially in the southern portion of its 

distribution, to act as reference sites and a source for the recolonisation of fynbos plants and 

animals in clear-felled sites at Tokai and Cecilia. Pine plantations have already transformed 

13% of Peninsula Granite Fynbos (Rebelo et al., 2006). The target for conservation of 30% is 

also not met, despite most of this vegetation type falling within Table Mountain National Park 

and Kirstenbosch National Botanical Garden, because fire-exclusion policies have led to the 

transformation of much of the conserved fynbos into Afrotemperate forest (Rebelo et al., 2006). 

Invertebrates should be included in a biodiversity monitoring programme tracking the 

recovery of fynbos post-felling of pine, because they respond rapidly to environmental change 

(Kremen et al., 1993; Andersen et al., 2004; Rohr et al., 2007). Ground-dwelling invertebrates 

are a diverse and functionally important component of the biota, and so should be included in 

monitoring in their own right, not simply because they are easy experimental subjects. 
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Moreover, many are short-range (i.e. localised) Cape Peninsula endemics. Similarly, many are 

functionally important in litter decomposition and the release of litter nutrients. 

It will be important to monitor ants over time, at both fine and coarse scales, because 

invasive alien Argentine ants display a dynamic invasion front, with seasonal and annual 

fluctuations. Mapping the broad distribution of the Argentine ant on the Cape Peninsula would 

allow for some ecoclimatic modelling, and might provide data on their habitat requirements and 

altitudinal distribution. This would provide a broader framework for understanding the invasion 

dynamics in the Cape Floristic Region. In light of the low abundance of Argentine ant in mature 

fynbos sites compared to other habitats sampled in this study, the putative absence of 

established nests in mature fynbos in Table Mountain National Park needs to be confirmed, and 

further researched, as this has implications for their control. Monitoring of restoration progress 

post-felling should focus on the Argentine ant, Pheidole capensis and Camponotus bertolinii. 

These two native species, verified as characteristic ecological indicators for Granite Fynbos 

(Chapter 5), could be used as benchmarks for monitoring restoration progress, because their 

presence in clear-felled sites could indicate restoration success. These findings have application 

throughout the Fynbos Biome and to other Mediterranean-type ecosystems where pine has 

been introduced and has become invasive. Monitoring alien invasive species, especially 

Argentine ants, is equally important in other Mediterranean-climate regions. 

While the methods adopted identified characteristic species (P. capensis and C. 

bertolinii) that could indicate whether restoration is successful, a threshold of abundance would 

be more convincing as a measure of successful restoration than presence-absence. Further 

study is required to determine what these thresholds are for each indicator species. Perhaps 

another way to look at this would be to search for nests of indicator ant species, to ensure that 

they are resident in sites undergoing restoration, and not simply foraging there temporarily. 

Thresholds are also likely to be contingent on patch size, habitat heterogeneity and levels of 

disturbance, including fire history. 

Disturbance events are known to facilitate the establishment of invasive species (Hobbs 

& Huenneke, 1992), in spite of often temporarily increasing species richness. These alien 

invasive plants and animals can alter the progress and direction of regeneration following 

disturbance events, such as clear-felling (Pawson et al., 2006). As such, alien invertebrate 

species merit special inclusion in monitoring programmes (McGeoch et al., 2011), because they 

can act as a measure of restoration success. The relative proportion of alien invertebrates is 

likely to differ between restored and undisturbed reference sites (Longcore, 2003). None of the 

sites sampled in this study can be considered fully restored, but this trend is expected to apply. 
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Argentine ant invasion could hamper fynbos restoration efforts, because if they displace or 

prevent native ants from establishing colonies as restoration proceeds, an altered fynbos plant 

community might result. Tracking co-occurrence patterns of ant communities as restoration 

proceeds is thus recommended.  Argentine ants are known to displace the abundant native ant 

species involved in the effective dispersal and below-ground storage of large-seeded proteas in 

fynbos (De Kock & Giliomee, 1989; Christian, 2001; Witt et al., 2004). Thus a goal of restoration 

should be to control, and if possible eliminate, Argentine ants and other invasive alien species 

as restoration proceeds. Successful elimination of Argentine ants in fynbos or any other habitat 

in southern Africa has not yet been achieved. In mature fynbos, control is most likely to be 

successful if concentrated on open fynbos areas in summer, when low soil moisture levels are 

expected to be a limiting factor for Argentine ant success. 

 

Cautionary notes 

 

This study was confined to ground-dwelling invertebrates and a small section (about 12 km 

north-south) of the Cape Peninsula, an area renowned for its exceptional invertebrate diversity 

and endemism (Picker & Samways, 1996; Hamer & Slotow, 2002; Pryke & Samways 2009a). 

Results should be interpreted only as an indication of the faunal exchanges that have taken 

place between exotic pine plantations and native forest and fynbos on the eastern slopes of 

Table Mountain National Park, and may not apply to plantations in other parts of the Cape 

Floristic Region, or elsewhere, or to other exotic woody species (e.g. Acacia, Eucalyptus and 

Quercus spp.). Nevertheless, the impacts of alien species observed in this study are likely to be 

more important than in many other regions, owing to the exceptional levels of local endemism 

on the Cape Peninsula and high beta diversity within and between vegetation types. 

Conclusions drawn may also be contingent on the year in which sampling took place. 

Biotic variations between years resulting from uncontrolled variables, such as precipitation, 

temperature and competitor/predator pressure, are known to influence community structure 

(Vaughn & Young, 2010 and references therein). Since sampling was conducted over only one 

spring-summer season, inter-annual fluctuations in community composition, population 

demographics and distributions were not accounted for. Therefore, results should be viewed in 

a short-term context and longer-term changes also need to be monitored. This is especially 

important for Argentine ants, with their dynamic invasion fronts that result in impacts that vary 

annually and seasonally. 
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To have confidence in the validity of findings it is necessary to know the total number of 

species present in the assemblages sampled, and the number of sampling replicates needed to 

accurately predict the species richness of an area or habitat (Colwell & Coddington, 1994). 

Comparative studies of different habitats require a near-complete list of species for each habitat 

(Thompson et al., 2003). However, there is a trade-off between inventory completeness and 

sampling intensity (i.e. collector effort), and the costs and logistical practicality must be 

considered. Greater sampling effort may be needed when there is a high proportion of rare 

species (as in this study), because species accumulation curves are influenced by the 

proportion of rare species at a site (Thompson et al., 2003). 

Capture frequency was low for many of the species collected in this study, with a high 

proportion of singletons and doubletons. This low abundance (numbers of individuals) and/or 

low incidence (presence at one or a few sites only) may reflect true rarity, or simply high 

numbers of ‘transient’ species that were passing through the area, but were not resident in that 

habitat. Litter invertebrates are often more vagile than in other assemblages (for example, 

compared to aerial taxa) and thus expected to show greater turnover between sites (Uys et al., 

2009).  The slope of the latter part of species accumulation curves for assemblages dominated 

by rare species is often steeper than for sites or habitats with a more even distribution of 

relatively abundant species (Thompson & Withers, 2003). This might explain why sampling 

saturation was not achieved and abundance-standardisation was necessary. 

The spatial grain at which species accumulation was investigated might further confound 

matters. Species accumulation is area dependent, and rarity is often greater at coarser spatial 

scales (Hui, 2008). Curves were plotted for habitats, with sites used as replicates. Site species 

counts were calculated by pooling all collecting replicates (leaf litter samples, pitfall traps, etc.) 

to obtain a single value per site. Therefore, habitat heterogeneity across the spatial extent of 

sites sampled (12 km north-south distance between furthest sites) may partly account for the 

lack of sampling saturation in species accumulation curves. 

The sampling design was constrained by the pre-defined harvesting plan of the forestry 

company (MTO). As such, it was not possible to foresee the unplanned felling of pine plantation 

Site 11 during sampling. As far as possible, pine plantation and clear-felled sites were 

deliberately chosen in close proximity to forest and fynbos sites, to reduce unwanted spatial 

variability between treatments and controls. Yet, the ‘ideal’ scenario of all four habitats in each 

of the eight areas sampled could not be achieved, and the size and proximity of sites to other 

habitats varied. These constraints put limitations on the statistical power and interpretation of 

some findings, but extended the scope and value of this study, especially in fynbos, where both 
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vegetation type and disturbance history could be compared within fynbos and between habitats. 

As with many community-type ecological studies, logistical constraints often limit replicate 

numbers, as was the case here, where site replication was limited by the actual number of 

existing replicate habitats available. 

The findings of this study are broadly compatible with invertebrate survey results in 

plantations locally (Ratsirarson et al., 2002; Raharinjanahary, 2007; Pryke & Samways, 2009b), 

regionally (Donnelly & Giliomee, 1985) and world-wide (e.g. Stephens & Wagner, 2007). While 

these findings are naturally most relevant in the Cape Floristic Region, especially on the Cape 

Peninsula, they are also broadly applicable in Mediterranean-type ecosystems in other parts of 

the world, especially where pine plantations have replaced native scrubland and thereby 

threaten native biodiversity. 

 

Conclusions 

 

As with similar studies in South Africa and globally, this study demonstrates that exotic woody 

plantations support lower faunal species richness, and different community assemblages, 

compared to neighbouring native forest, although they support similar species richness to non-

forested ecosystems, such as fynbos. Pine plantations, however, appear to be dominated by 

widespread, generalist species. Plantations may further negatively impact fynbos-specialist 

invertebrate communities, which have lost habitat through afforestation. Secondly, the strong 

colonial history associated with plantations on the Cape Peninsula, combined with the mostly 

European origin of all non-ant alien invertebrates identified here, suggests that these plantations 

may have facilitated the establishment of some alien invertebrate species. In particular, the 

carnivorous alien molluscs, European wasp and Argentine ant, require further study and careful 

monitoring, because the impacts of all alien invertebrates identified were not clear. Argentine 

ants do not appear to have caused displacement, impoverishment or community disassembly of 

native ants. 

Both planting and felling of alien pine trees impact invertebrate assemblages. Recovery 

of invertebrate communities post-felling is critical to ensure a functioning ecosystem. Ants show 

potential as the most suitable ground-dwelling invertebrate taxon to use as an ecological 

indicator for monitoring restoration progress in fynbos, following clear-felling of pine plantations. 

Individual ant species (Pheidole capensis and Camponotus bertolinii) that show potential as 

characteristic indicators of Granite Fynbos should be monitored as restoration of clear-felled 

pine sites proceeds. 
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The way forward 

 

Recommendations for monitoring invertebrates 

 Invertebrate conservation and management needs to be incorporated into mainstream 

planning and management processes in South African protected areas (Engelbrecht, 2010). 

McGeoch et al. (2011) recommend further surveys in protected areas that focus on alien 

invertebrate species and their associated impacts, control or eradication, and institution of 

measures for the prevention of further spread and future invasions. 

 The extension, or replication, of a spatially and temporally replicated ant monitoring 

program, such as the Iimbovane project (http://academic.sun.ac.za/iimbovane), throughout 

Table Mountain National Park is needed to deliver long-term data (Braschler et al., 2010) 

and monitor changes as restoration of clear-felled pine proceeds. Valuable lessons can also 

be learnt from the adoption and implementation of the invertebrate monitoring programme 

focussed on ants in Kruger National Park, which is also managed by SANParks (McGeoch 

et al., 2011). 

 Long-term monitoring of fixed sites across an altitudinal range (in this case, moving up the 

mountain, away from the suburbs on the Cape Peninsula) is needed to track the dynamics 

of the Argentine ant invasion front. Argentine ants are generally not able to sustain colonies 

in undisturbed fynbos (Macdonald & Jarman, 1984; De Kock & Giliomee, 1989), or in the 

absence of permanent water sources (Holway, 2005; Parker-Allie et al., 2008), especially at 

high altitudes (Raharinjanahary, 2007). 

 Alien invertebrate species need to be ranked in terms of their impacts, in order to prioritise 

management actions (Parker et al., 1999). Argentine ants top the list for priority action. 

Targeted studies for carnivorous molluscs (e.g. Oxychilus spp.) and the European wasp 

(Vespula germanica) should be extended to include sites outside of the National Park. 

 A comparative study of alien invertebrates in other Mediterranean-type ecosystems across 

the world could advance understanding of invasion pathways and processes, enable early 

warning systems to be put in place for species that have become invasive elsewhere, and 

share lessons learnt about impacts and successful eradications. While some of these data 

are available for well-studied social species, such as Argentine ants and to a lesser degree 

European wasps, comparative data are urgently needed for other alien invertebrate species. 

 

http://academic.sun.ac.za/iimbovane
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Recommendations for monitoring restoration progress in fynbos following clear-felling of pine  

 Clear-felling of pine plantations is potentially beneficial for invertebrate conservation in light 

of the findings that pine plantations support almost no known Cape Peninsula endemic 

species and few unique species, yet support a large number of alien invertebrate species in 

the litter community. 

 The challenge will be to document over time whether restoration ultimately leads to the re-

establishment of a functional fynbos-specialist invertebrate community, or simply retains an 

impoverished community dominated by generalist, widespread species. 

 Despite the many recognised challenges involved in monitoring with invertebrates (Lovell et 

al., 2010), the growing number of successful case studies and range of solutions mean that 

their advantages are beginning to outweigh perceived and real disadvantages (McGeoch et 

al., 2011). Terrestrial invertebrate indicator taxa hold value and potential for monitoring 

responses to environmental change in the South African protected area context (McGeoch 

et al., 2002; Botes et al., 2006a, b; Uys et al., 2010). 

 Granite Fynbos is not likely to regenerate satisfactorily without fire, since fynbos is both fire-

prone and fire-dependent (Forsyth & Bridgett, 2004). Therefore, active intervention through 

controlled burning post-felling is necessary. Fynbos-specialist species are most likely fire-

adapted and might be disadvantaged, or even excluded, by continued fire suppression. 

 The remaining Afrotemperate forests, restricted to isolated ravines and fire-protected areas 

in Sandstone Fynbos, must also be managed and protected during restoration efforts, 

because they support many of the Cape Peninsula endemic invertebrates (Picker & 

Samways, 1996) and are a conservation priority (Pryke & Samways, 2009b). 

 Pinus radiata (Monterey pine) is the most widely planted conifer species for commercial 

timber production globally (Richardson et al., 1994). It is also highly invasive in 

Mediterranean-type scrubland vegetation outside of its native range in California 

(Henderson, 2001). A comparative study of the impacts of planting and felling exotic pine 

plantations on invertebrate diversity in different Mediterranean-type regions is thus needed. 
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APPENDIX A. Location of 32 study sites across the eight areas sampled in Table Mountain 

National Park, on the Cape Peninsula. 

 
Site Area Landmark Altitude GPS coordinates Vegetation 

   (m a.s.l.) (WGS 84 Spheroid Standard)  

1 Newlands Above reservoir 230 33o 57' 58.3" S 18o 26' 31.6" E Afrotemperate forest 

2 Newlands Above reservoir 200 33o 57' 51.9" S 18o 26' 25.1" E Pine plantation 

3 Newlands Beyond weir 270 33o 58' 17.5" S 18o 26' 23.4" E Sandstone Fynbos 

4 Newlands Beyond weir 260 33o 58' 24.5" S 18o 26' 27.1" E Pine plantation 

5 Kirstenbosch Skeleton Gorge 400 33o 58' 55.0" S 18o 25' 25.0" E Afrotemperate forest 

6 Kirstenbosch Skeleton Gorge 330 33o 59' 03.2" S 18o 25' 28.4" E Granite Fynbos 

7 Kirstenbosch Nursery Ravine 380 33o 59' 12.6" S 18o 25' 18.7" E Afrotemperate forest 

8 Kirstenbosch Nursery Ravine 350 33o 59' 17.8" S 18o 25' 19.2" E Granite Fynbos 

9 Cecilia, Rooikat Rooikat Ravine 400 33o 59' 33.8" S 18o 25' 12.0" E Afrotemperate forest 

10 Cecilia, Rooikat Rooikat Ravine 430 33o 59' 36.9" S 18o 25' 11.0" E Sandstone Fynbos 

11* Cecilia, Rooikat Rooikat Ravine 320 33o 59' 46.0" S 18o 25' 20.8" E Pine plantation 

12 Cecilia, Rooikat Rooikat Ravine 300 33o 59' 42.9" S 18o 25' 21.6" E Clear-felled pine 

13 Cecilia, Spilhaus Cecilia Waterfall 400 33o 59' 43.5" S 18o 25' 05.4" E Afrotemperate forest 

14 Cecilia, Spilhaus Spilhaus Ravine 520 33o 59' 53.7" S 18o 24' 51.6" E Sandstone Fynbos 

15 Cecilia, Spilhaus Spilhaus Ravine 450 33o 59' 55.7" S 18o 25' 01.4" E Pine plantation 

16 Cecilia, Spilhaus Spilhaus Ravine 470 34o 00' 03.7" S 18o 24' 45.6" E Clear-felled pine 

17 Constantia Nek Eagle's Nest 390 34o 00' 23.1" S 18o 24' 17.7" E Sandstone Fynbos 

18 Constantia Nek Bridle Path 340 34o 00' 15.2" S 18o 24' 46.6" E Pine plantation 

19 Constantia Nek Bridle Path 330 34o 00' 19.6" S 18o 24' 45.4" E Clear-felled pine 

20 Constantia Nek Steps 280 34o 00' 31.6" S 18o 24' 19.4" E Clear-felled pine 

21 Orange Kloof Above weir 130 34o 00' 12.3" S 18o 23' 25.8" E Afrotemperate forest 

22 Orange Kloof Filtration plant 240 34o 00' 22.8" S 18o 24' 01.6" E Pine plantation 

23 Orange Kloof Logging road 180 34o 00' 00.6" S 18o 23' 40.2" E Clear-felled pine 

24 Orange Kloof Logging road 180 34o 00' 18.9" S 18o 23' 45.5" E Clear-felled pine 

25 Tokai N Boekenhoutkloof 370 34o 02' 17.0" S 18o 23' 44.1" E Afrotemperate forest 

26 Tokai N Boekenhoutkloof 360 34o 02' 15.9" S 18o 23' 48.8" E Sandstone Fynbos 

27 Tokai N Boekenhoutkloof 330 34o 02' 23.5" S 18o 23' 53.3" E Pine plantation 

28 Tokai N Boekenhoutkloof 280 34o 02' 23.1" S 18o 23' 52.5" E Clear-felled pine 

29 Tokai S Prinskasteel 240 34o 03' 56.1" S 18o 24' 05.4" E Afrotemperate forest 

30 Tokai S Prinskasteel 310 34o 04' 01.1" S 18o 24' 02.8" E Sandstone Fynbos 

31 Tokai S Prinskasteel 300 34o 03' 54.3" S 18o 24' 10.2" E Pine plantation 

32 Tokai S Prinskasteel 230 34o 03' 59.9" S 18o 24' 09.8" E Clear-felled pine 

* The entire pine block was unexpectedly felled in January 2009, and consequently no pitfall traps, sugar-baited ant 

traps or decayed logs were sampled. 
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APPENDIX B. Names, institutes and countries of taxonomic experts who assisted with species level identification of selected groups. 

 

Taxon Name Institute City, Country Pilot Full-scale 

Amphipoda, Isopoda Charles Griffiths University of Cape Town Cape Town, South Africa  * 

Araneae (preliminary identification) Norman Larsen Iziko South African Museum Cape Town, South Africa *  

Araneae: Corrinidae, Salticidae Charles Haddad University of the Free State Bloemfontein, South Africa *  

Araneae Ansie Dippenaar-Schoeman ARC - Plant Protection Research Institute Pretoria, South Africa * * 

Blattodea Horst Bohn Zoologische Staatssammlung München München, Germany * * 

Coleoptera Peter Hammond The Natural History Museum London, England  * 

Coleoptera: Pselaphinae Peter Hlaváč Private Košice, Slovakia  * 

Coleoptera: Scarabaeoidea Francois Roets University of Stellenbosch Stellenbosch, South Africa  * 

Collembola Ernest Bernard University of Tennessee Knoxville, USA  * 

Diplopoda Michelle Hamer South African National Biodiversity Institute Pretoria, South Africa * * 

Diplopoda: Penicillata Monique Nguyen Duy-Jacquemin Museum National d'Histoire Naturelle Paris, France  * 

Hemiptera: Cicadellidoidea, Fulgoroidea Michael Stiller ARC - Plant Protection Research Institute Pretoria, South Africa  * 

Hemiptera: Reduviidae Patrick Reavell University of Stellenbosch Stellenbosch, South Africa  * 

Hymenoptera: Formicidae Nokuthula Mbanyana Iziko South African Museum Cape Town, South Africa  * 

Hymenoptera: Amiseginae Simon van Noort Iziko South African Museum Cape Town, South Africa  * 

Mollusca Dai Herbert Natal Museum Pietermaritzburg, South Africa * * 

Oligochaeta Danuta Plisko Natal Museum Pietermaritzburg, South Africa *  

Onychophora, Coleoptera, Hemiptera, 

Hymenoptera, Orthoptera 
Mike Picker University of Cape Town Cape Town, South Africa * * 

Psocoptera Charles Lienhard Museum of Natural History Geneva, Switzerland * * 

Scorpiones, Solifugae Lorenzo Prendini American Museum of Natural History New York, USA  * 
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APPENDIX C. Checklist of the 728 species and 112 404 individuals from the 31 sites sampled (Site 11 pine omitted), with the 

number of individuals in each habitat. C = class, O = order, F = family, SubF = subfamily, A = alien and PE = Cape Peninsula 

endemic. 

 
Species    Forest Fynbos Pine Felled 

C: TURBELLARIA      
O: Tricladida      
F: Rhynchodemidae      
SubF: Microplaninae      

sp.   34 5 22 2 

C: CLITELLATA           
O: Haplotaxida      

Unidentified  1113 75 263 26 

C: GASTROPODA           
O: Eupulmonata      
F: Arionidae      

Arion hortensis aggregate Férussac, 1819  A 106 29 131 5 
F: Agriolimacidae      

Deroceras panormitanum (Lesson & Pollonera, 1882) A 30 4 3 0 
F: Limacidae      

Lehmannia valentiana (Férussac, 1821) A 28 4 23 3 
Limax maximus Linnaeus, 1758 A 2 0 0 0 

F: Charopidae      
Trachycystis bisculpta (Benson, 1851)  0 24 0 1 
Trachycystis perplicata (Benson, 1851) PE 6 0 0 0 
Trachycystis tollini (Benson, 1856)  32 0 0 0 
Trachycystis/ Afrodonta/ alien sp.  13 5 1 0 

F: Cochlicopidae      
Cochlicopa sp.  A 16 0 0 0 
Cochlicopa cf. lubricella Férussac, 1821 A 56 0 3 0 

F: Helicidae      
Cornu aspersum (Müller, 1774) A 6 0 0 0 

F: Hydrocenidae      
Hydrocena noticola Benson, 1856  254 0 0 0 

F: Pristilomatidae      
Vitrea contracta (Westerlund, 1871) A 13 0 19 2 

F: Punctidae      
cf. Punctum sp.  A 35 0 38 1 
Paralaoma hottentota (Melvil & Ponsonby, 1891)  18 13 6 3 

F: Pupillidae      
Lauria cylindracea (da Costa, 1778) A 0 0 1 0 

F: Rhytididae      

Nata tarachodes (Connolly, 1912)  7 0 0 0 

Species    Forest Fynbos Pine Felled 

Nata vernicosa (Krauss, 1848)  2 0 0 0 
F: Zonitidae      

Oxychilus draparnaudi (Beck, 1837) A 60 2 13 0 
Oxychilus sp. Fitzinger, 1833 A 9 10 10 16 

C: ARACHNIDA           
O: Scorpiones      
F: Buthidae      

Uroplectes insignis Pocock, 1890 PE 9 13 6 1 
Uroplectes lineatus (C.L. Koch, 1844)  0 9 1 14 

O: Pseudoscorpiones      
sp. 1  6 13 3 2 
sp. 2  17 0 4 0 
sp. 3  0 0 1 1 
sp. 4  3 0 0 0 
sp. 5  2 1 0 0 

O: Solifugae      
F: Solpugidae      

Zeria fusca (C.L. Koch, 1842)  0 7 0 1 
O: Araneae      
F: Cyrtaucheniidae      

Ancylotrypa sp. 1   1 1 0 0 
Ancylotrypa sp. 2   0 1 0 0 

F: Migidae      
Moggridgea quercina Simon, 1903  2 0 1 0 
Moggridgea teresae Griswold, 1987 PE 8 1 0 0 

F: Nemesiidae      
Hermacha brevicauda Purcell, 1903  3 0 0 0 
Hermacha sp.   0 1 0 0 

F: Amaurobiidae      
Chresiona sp.   7 1 0 0 

F: Anapidae       
sp.  2 2 5 0 

F: Araneidae      
Nemoscolus tubicola (Simon, 1887)  0 0 0 1 
Neoscona subfusca (C.L. Kock, 1837)  1 0 0 0 

F: Clubionidae      
Cheiramiona sp.   1 2 1 1 
Clubiona sp. 1   11 2 1 2 
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Species    Forest Fynbos Pine Felled 

Clubiona sp. 2   4 0 0 0 
Clubiona vachoni Lawrence, 1952  1 0 0 0 

F: Corinnidae      
sp. 1  1 4 4 3 
sp. 2  4 2 0 1 
sp. 3  1 0 0 0 
sp. 4  1 0 1 0 

F: Ctenidae      
Ctenus sp.   0 1 0 0 

F: Cyatholipidae      
Cyatholipus quadrimaculatus Simon, 1894  7 2 7 3 

F: Dictynidae      
Dictyna sp.   0 1 0 0 
Mashimo leleupi Lehtinen, 1967  0 1 0 0 

F: Drymusidae      
Drymusa capensis Simon, 1893  3 0 1 0 

F: Gnaphosidae      
Asemesthes sp.   0 1 0 0 
Camillina sp.   1 2 1 0 
Drassodes sp. 1   2 0 0 0 
Drassodes sp. 2   1 0 0 0 
Zelotes sp. 1   1 2 0 2 
Zelotes sp. 2   0 2 0 1 
Zelotes sp. 3   0 15 0 10 
Zelotes sp. 4   0 0 0 4 
Zelowan sp.   0 1 0 0 

F: Hahniidae      
Hahnia sp. nov. C.L. Koch, 1841  1 0 0 0 

F: Linyphiidae      
Eperigone fradeorum (Berland, 1932)  1 0 0 1 
Meioneta sp.   3 0 4 0 
Metaleptyphantes sp. 1   17 7 15 7 
Metaleptyphantes sp. 2   1 0 1 0 

Ostearius melanopygius (OP-Cambridge, 1879)  1 0 0 1 
sp. 1  3 2 20 3 
sp. 2  1 1 1 1 

F: Liocranidae      
sp. 1  0 2 3 0 
sp. 2  1 0 0 0 
sp. 3  1 0 0 0 

F: Lycosidae      
Pardosa sp. 1   0 0 0 2 
Pardosa sp. 2   0 0 0 10 
sp. 1  0 0 0 9 
sp. 2  0 0 0 10 
sp. 3  0 2 0 25 

Species    Forest Fynbos Pine Felled 

F: Mimetidae      
Ero capensis Simon, 1895  2 0 0 0 

F: Miturgidae      
Phanotea sp. 1   2 0 0 0 
Phanotea sp. 2   1 0 0 0 

F: Oonopidae      
Gamasomorpha sp.   1 0 0 0 

F: Orsolobidae      
sp.   0 0 1 0 

F: Oxyopidae      
Oxyopes sp.   0 2 0 0 

F: Palpimanidae      
Palpimanus capensis Simon, 1893  12 0 4 1 

F: Philodromidae      
Philodromus vulgaris (Hentz, 1847)  1 4 0 8 

F: Pholcidae      
Spermophora gordimerae Huber, 2003 PE 6 3 0 1 
Spermophora peninsulae Lawrence, 1964 PE 1 0 0 0 
Spermophora sp.   4 0 1 0 

F: Phyxelididae      
Malaika longipes (Purcell, 1904) PE 14 2 0 0 

F: Pisauridae      
Afropisaura rothiformis (Strand, 1908)  0 0 1 0 

F: Prodidomidae      
sp.   1 0 0 0 

F: Salticidae      
SubF: Aelurillinae      

Langona sp.   0 8 0 4 
Phlegra sp.   0 1 0 0 
sp. 1  0 1 0 0 
sp. 2  0 1 0 0 

SubF: Euophrydinae      
Euophrys sp.   1 2 2 1 

Thyenula oranjensis Wesolowska, 2001  8 2 6 2 
Thyenula sp. 1   0 0 1 0 
Thyenula sp. 2   1 0 0 1 

SubF: Heliophaninae      
Heliophanus sp.   0 0 0 3 
Natta sp.   0 1 0 0 

SubF: Hyllinae      
Evarcha sp.   1 1 3 1 
Pellenes sp.   3 2 2 2 

SubF: Massagrininae      
Massagris sp.   2 3 3 3 

SubF: Plexippinae      
Thyene ogdeni (Peckham & Peckham, 1903)  0 1 0 0 
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Species    Forest Fynbos Pine Felled 

Thyene sp.   0 2 0 0 
sp.  0 2 1 1 

F: Scytodidae      
Scytodes gooldi Purcell, 1904  0 1 0 2 
Scytodes montana Purcell, 1904  20 17 3 9 

F: Segestriidae      
Ariadna sp.   1 1 0 0 

F: Selenopidae      
Anyphops sp.   0 4 0 0 

F: Tetragnathidae      
Diphya simoni Kauri, 1950  1 0 2 1 
Meta sp.   0 0 1 0 

F: Theridiidae      
Achaearanea sp.   0 1 3 0 
Dipoena sp.   1 5 2 2 
Episinus sp.   1 0 0 0 
Euryopis sp. 1   6 76 22 81 
Euryopis sp. 2   0 3 0 1 
Steatoda capensis Hann, 1990  4 1 0 2 
Steatoda sp.   1 0 0 0 
Theridion sp. 1   4 1 1 3 
Theridion sp. 2   2 0 1 0 
Theridion sp. 3   4 1 0 1 
Theridion sp. 4   1 0 2 0 

F: Theridiosomatidae      
sp.   1 1 0 0 

F: Thomisidae      
Hewittia gracilis Lessert, 1928  0 1 0 0 
Monaeses australis (Lawrence, 1937)  1 0 0 0 
Oxytate argenteooculata (Simon, 1886)  1 0 0 0 
Ozyptila sp.   1 10 0 2 
Simorcus haddadi van Niekerk & Dippenaar-
Schoeman, 2010  0 1 1 5 

Stiphropus sp.   0 2 0 0 
Synema abnorme Lessert, 1923  0 0 0 1 
Thomisops sp.   0 3 0 0 
Tmarus cameliformis Millot, 1941  0 2 0 0 
Tmarus foliates Lessert, 1928  0 2 1 0 
Xysticus lucifugus Lawrence, 1937  1 7 1 1 

F: Zodariidae      
Akyttara sp.   0 6 0 2 
Chariobas cylindraceus Simon, 1893  4 0 0 0 
Cydrela sp.   5 0 3 0 
Diores simoni O. P.-Cambridge, 1904  1 5 2 8 
Diores sp.   0 10 0 1 

Diores youngai Jocqué, 1990  0 19 2 15 

Species    Forest Fynbos Pine Felled 

Heradida sp.   0 3 0 0 
O: Opiliones      

sp. 1  702 10 85 52 
sp. 2  11 15 5 0 
sp. 3  66 11 8 3 
sp. 4  10 12 1 0 
sp. 5  15 2 2 0 
sp. 6  3 0 0 0 
sp. 7  4 0 0 0 

O: Acari      
sp. 1  56 3 1 2 
sp. 2  44 17 3 2 
sp. 3  28 7 64 1 
sp. 4  35 0 0 0 
sp. 5  1 0 4 0 
sp. 6  51 2 46 5 
sp. 7  0 9 2 1 
sp. 8  58 79 159 29 
sp. 9  2 99 8 12 
sp. 10  59 0 46 1 
sp. 11  0 0 1 0 
sp. 12  1 0 0 0 
sp. 13  3 12 5 0 
sp. 14  5 9 22 1 
sp. 15  8 0 4 0 
sp. 16  8 12 8 6 
sp. 17  0 0 1 0 

C: MALACOSTRACA           
O: Isopoda      
F: Armadillidiidae      

Armadillidium sp.   37 0 0 0 
F: cf. Oniscidae      

sp. 1  54 65 0 11 

sp. 2  0 2 0 0 
F: Cylisticidae      

Cylisticus sp.   6 3 53 0 
F: Porcellionidae      

Porcellio scaber Latreille, 1804 A 49 99 8 108 
sp.   19 0 0 0 

F: Trichoniscidae      
Haplophthalmus sp.   18 0 0 0 

O: Amphipoda      
F: Talitridae      

Talitriator cylindripes (Barnard, 1940)  1366 143 184 118 
Talitriator setosa (Barnard, 1940)  253 25 51 61 

C: COLLEMBOLA           
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Species    Forest Fynbos Pine Felled 

O: Entomobryomorpha      
F: Entomobryidae      

Entomobrya nivalis (Linnaeus, 1758) A 0 0 16 2 
Entomobrya sp.   0 0 1 1 
Lepidocyrtus sp. 1   1 0 2 0 
Lepidocyrtus sp. 2   0 9 18 0 
Seira barnardi (Womersley, 1934)  1434 32 41 1 
Seira capensis Womersley, 1934  35 12 3 0 
Seira dayi (Yosii, 1959)  39 30 172 22 

Seira ferrarii Parona, 1888  4 5 0 12 
Seira nagatai Yosii, 1959  2 0 2 0 
Seira sp. 1   9 3 119 5 
Seira sp. 2   0 2 0 0 
Seira sp. 3   0 5 0 0 
Seira sp. 5   3 5 0 8 
Seira sp. 6   0 10 0 3 

F: Hypogastruridae      
Ceratophysella sp.   0 0 19 0 

O: Poduromorpha      
F: Neanuridae      

Neanura muscorum (Templeton, 1835) A 1 4 2 2 
F: Onychiuridae      

Deuteraphorura sp.   0 3 16 0 
Orthonychiurus saasveldensis (Weiner & Najt, 1991)  0 0 33 0 

F: Tomoceridae      
Tomocerus minor (Lubbock, 1862) A 0 1 0 4 

C: INSECTA           
O: Thysanura      
F: Lepismatidae      

sp.   0 4 0 0 
O: Archaeognatha      
F: Machilidae      

Machiloides obsoletus Silvestri, 1904  167 22 7 2 
O: Blattodea      
F: Blaberidae      

Aptera fusca (Thunberg, 1784)  0 3 0 0 
Perisphaeria, Poeciloblatta sp.  0 8 0 3 

F: Blattellidae      
Anallacta confusa Princis, 1963   23 3 0 0 
Dipteretrum brinckae Princis 1963 PE 0 53 0 0 
Ectobius sp. nov.   1 81 3 62 
gen. nov.   1 64 1 2 
Hoplophoropyga unicolor (Karny, 1908) PE 0 32 0 30 
Temnopteryx phalerata (Saussure, 1864)  13 127 15 90 
Xosablatta caffra (Saussure, 1899)  71 4 1 0 

F: Blattidae      

Species    Forest Fynbos Pine Felled 

Brinckella hanstroemi (Princis, 1949)  0 0 1 0 
cf. Duchailluia sp.   4 1 0 4 
Pseudoderopeltis sp.   9 21 3 0 

O: Mantodea      
sp. 1  1 0 1 0 
sp. 2  0 4 0 0 

O: Dermaptera      
sp. 1  91 2 53 10 
sp. 2  23 0 10 1 

sp. 3  18 3 0 1 
sp. 4  2 0 1 0 
sp. 5  1 0 0 0 

O: Phasmatodea      
sp. 1  0 1 1 1 
sp. 2  0 12 0 1 

O: Psocoptera      
F: Trogiidae      

Cerobasis guestfalica (Kolbe, 1880)  0 0 4 0 
gen. nov.  36 10 33 6 
Helenatropos abrupta Lienhard, 2005  0 3 8 0 
Lepinotus sp.   0 0 1 0 

F: Amphipsocidae      
gen. nov.  8 1 0 0 

F: Ectopsocidae      
Ectopsocus briggsi McLachlan, 1899  1 1 7 0 

F: Pseudocaeciliidae      
Pseudocaecilius sp.   1 0 0 0 

F: Elipsocidae      
Elipsocus sp.   1 0 1 0 
Propsocus pulchripennis (Perkins, 1899)  0 1 1 0 

F: Lesneiidae      
Lesneia sp. 1   0 1 0 0 
Lesneia sp. 2   0 1 0 0 

O: Thysanoptera      
sp.   2 0 0 0 

O: Orthoptera      
F: Acrididae      

sp. 1  0 1 0 0 
sp. 2  0 8 0 0 
sp. 3  0 2 0 3 

F: Anostostomatidae      
Henicus brevimucronatus Griffini, 1911  3 0 3 0 
Libanasa sp.   4 0 4 0 
Onosandridus sp. 1   42 1 1 3 
Onosandridus sp. 2   2 4 41 1 
sp.   1 16 0 0 
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F: Gryllidae      
Cophogryllus sp.   4 61 27 44 
Gryllus bimaculatus De Geer, 1773  0 0 0 434 
sp.   1 0 0 0 

F: Lentulidae      
sp.   0 58 1 0 

F: Mogoplistidae      
sp.   96 377 211 767 

F: Stenopelmatidae      

Maxentius / Sia sp.  0 3 0 0 
F: Tetrigidae      

sp.   0 1 0 0 
F: Tettigoniidae      

sp.   1 0 2 0 
O: Hemiptera      
F: Miridae      

sp.   0 1 0 0 
F: Nabidae      

Prostemma cf. ruficolle Laporte, 1832  0 3 0 1 
F: Coreidae      

sp. 1  1 2 0 0 
sp. 2  1 0 0 0 

F: Anthocoridae      
sp. 1  0 1 0 1 
sp. 2  0 0 1 0 
sp. 3  1 0 0 0 
sp. 4  0 0 3 1 
sp. 5  1 0 0 0 
sp. 6  0 3 0 3 
sp. 7  83 6 21 5 
sp. 8  95 0 13 6 
sp. 9  0 0 0 1 
sp. 10  3 2 0 0 

sp. 11  14 0 2 1 
sp. 12  4 0 0 0 
sp. 13  1 0 0 0 
sp. 14  1 0 0 0 

F: Enicocephalidae      
sp.   4 0 0 0 

F: Lygaeidae      
sp. 1  46 1 0 0 
sp. 2  1 0 0 0 
sp. 3  1 0 0 0 
sp. 4  3 0 1 0 
sp. 5  0 0 0 1 
sp. 6  0 1 0 1 

Species    Forest Fynbos Pine Felled 

sp. 7  1 2 0 1 
sp. 9  0 7 0 2 
sp. 10  54 1 1 28 
sp. 11  1 0 0 0 
sp. 12  0 1 0 0 
sp. 13  0 2 0 1 
sp. 15  0 2 0 1 
sp. 16  2 1 0 1 
sp. 17  16 1 8 2 

F: Cydnidae      
sp. 1  0 2 0 0 
sp. 2  1 1 1 0 
sp. 3  0 1 1 0 

F: Pyrrhocoridae      
sp. 1  2 0 0 0 
sp. 2  3 5 0 0 

F: Reduviidae      
Acanthaspis ehrenberghii  15 0 0 0 
Baebius sp. nov.  1 0 0 0 
Bargylia sp.   2 0 0 1 
Cleptria rufipes Stal, 1856  10 12 44 14 
Ploearia sp.   0 1 0 0 
Rhynocoris rufus (Thunberg, 1822)  0 5 0 3 
Tinna picta Wygodzinsky, 1958  1 4 0 2 
cf. Tinna sp.   2 0 0 0 

F: Tingidae      
sp. 1  0 0 1 0 

F: Aphididae      
sp. 1  9 14 385 94 
sp. 2  2 2 341 3 
sp. 3  2 7 15 38 
sp. 4  0 1 2 11 
sp. 5  5 0 0 0 

sp. 6  0 0 1 1 
F: Cercopidae      

Sepullia sp.   0 0 0 1 
F: Cicadellidae      

Capoideus sp.   0 0 0 1 
Chiasmus hyalinus (Evans, 1947)  0 0 0 3 
gen. nov.  0 0 0 1 
Houtbayana sp.   0 1 0 0 
Megaulon sp.   0 0 0 2 
Platentomus sp.   0 1 0 0 
sp.   2 3 0 0 
Typhlocybinae sp. 1   1 0 0 0 
Typhlocybinae sp. 2   1 0 0 0 
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Tzitzikamaia sp.   0 1 0 1 
Xestocephalus sp.   0 2 1 0 

F: Cixiidae      
sp. 1  2 0 0 0 
sp. 2  5 0 0 0 
sp. 3  4 1 0 0 

F: Delphacidae      
sp. 1  1 1 0 3 
sp. 2  1 0 0 0 

F: Fulgoroidea      
sp. 1  0 3 0 1 
sp. 3  0 1 0 0 
sp. 4  0 4 0 2 

F: Issidae      
sp.   0 8 0 2 

F: Meenoplidae      
sp. 1  45 0 0 0 
sp. 2  1 0 0 0 
sp. 4  1 0 0 0 
sp. 5  1 1 0 0 
sp. 7  0 1 1 0 

F: Tropiducidae      
Caffrommatissus trimaculatus Fennah, 1967  0 2 0 6 
sp.   0 1 0 0 

O: Neuroptera      
sp.   0 0 1 2 

O: Coleoptera      
F: Carabidae      

Passalidius sp.   20 14 38 45 
Thermophilum sp.  0 2 0 0 
sp. 1  22 2 78 14 
sp. 2  0 0 59 0 
sp. 3  0 0 30 0 

sp. 4  4 0 6 1 
sp. 5  0 3 1 35 
sp. 6  17 0 3 3 
sp. 7  1 1 6 0 
sp. 8  49 17 3 31 
sp. 9  0 0 0 1 
sp. 10  1 1 0 0 
sp. 11  0 4 0 4 
sp. 12  0 0 0 1 
sp. 13  5 0 0 0 

F: Bostrychidae      
sp. 1  0 0 1 0 
sp. 2  1 0 0 0 

Species    Forest Fynbos Pine Felled 

F: Byrrhidae      
sp.   0 7 1 0 

F: Lampyridae      
sp. 1  14 3 25 3 
sp. 2  1 0 0 0 

F: Cerambycidae      
sp. 1  0 3 0 2 
sp. 2  1 4 0 0 
sp. 3  1 1 0 0 

F: Chrysomelidae      
sp. 1  4 2 1 0 
sp. 2  0 3 0 0 
sp. 3  0 0 0 1 
sp. 4  0 0 0 1 
sp. 5  0 0 0 1 

F: Cleridae      
sp. 1  0 0 1 0 
sp. 2  0 0 0 1 
sp. 3  1 0 0 0 

F: Anthicidae      
sp. 1  10 4 7 0 
sp. 2  31 70 139 41 
sp. 3  0 1 0 0 

F: Cerylonidae      
sp.   46 765 43 505 

F: Ciidae      
sp.   0 2 0 9 

F: Coccinellidae      
sp.   0 1 1 0 

F: Colydiidae      
Pycnomerus sp.   15 3 2 11 

F: Corylophidae      
sp.   0 0 0 29 

F: Cryptophagidae      
sp.   3 0 0 0 

F: Cucujidae      
sp. 1  5 0 0 0 
sp. 2  0 0 0 1 

F: Discolomidae      
sp.   15 1 0 1 

F: Lathridiidae      
sp.   0 0 4 0 

F: Monotomidae      
cf. Europs sp.   5 7 83 25 

F: Mordellidae      
sp. 1  1 0 0 0 
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sp. 2  1 1 0 0 
sp. 3  0 0 0 1 

F: Nitidulidae      
cf. Epuraea sp. 1   1 0 0 0 
cf. Epuraea sp. 2   1 0 0 0 
cf. Haptoncus sp.   3 0 0 0 
cf. Lasiodactylus sp. 1  31 0 16 11 
cf. Lasiodactylus sp. 2  0 0 1 0 

F: Phalacridae      

sp.   0 1 0 0 
F: Salpingidae      

sp. 1  1 25 7 9 
sp. 2  0 0 0 2 

F: Scraptiidae      
sp.   3 0 0 0 

F: Silvanidae      
sp.   3 0 0 0 

F: Tenebrionidae      
sp. 1  21 1 33 1 
sp. 2  0 4 0 1 
sp. 3  0 15 21 12 
sp. 4  0 22 46 17 
sp. 5  8 9 2 24 
sp. 6  14 1 31 3 
sp. 7  5 3 5 1 
sp. 8  8 7 11 7 
sp. 9  9 15 8 5 
sp. 10  1 0 0 0 
sp. 11  0 0 0 1 
sp. 12  1 1 0 0 
sp. 14  1 0 0 0 

F: Curculionidae      
sp. 1  0 0 17 1 

sp. 2  0 0 0 1 
sp. 3  0 2 0 0 
sp. 4  16 2 3 3 
sp. 5  0 0 0 1 
sp. 6  0 0 0 1 
sp. 7  0 1 0 0 
sp. 8  2 0 0 0 
sp. 9  0 0 0 1 
sp. 10  12 0 0 1 
sp. 11  2 1 0 0 
sp. 12  7 0 4 1 
sp. 13  8 0 5 0 
sp. 14  2 0 0 0 

Species    Forest Fynbos Pine Felled 

sp. 15  1 0 0 0 
sp. 16  0 0 1 0 
sp. 17  6 1 0 0 
sp. 18  5 0 0 0 
sp. 19  10 2 2 1 
sp. 21  1 0 0 0 
sp. 22  0 4 0 1 
sp. 23  48 0 0 0 

F: Platypodidae      

sp.   0 0 0 1 
F: Scolytidae      

sp. 1  0 0 1 7 
sp. 2  1 0 10 15 
sp. 3  3 0 0 0 
sp. 4  1 0 0 2 

F: Elateridae      
sp. 1  1 0 1 2 
sp. 2  1 0 0 0 
sp. 3  6 2 0 0 
sp. 4  1 0 1 0 
sp. 5  2 1 0 0 
sp. 7  2 0 4 1 
sp. 8  26 1 1 1 

F: Histeridae      
sp.   2 0 1 1 

F: Scarabaeidae      
Bohepilissus nitidus Balthasar, 1965 PE 115 0 0 0 
Epirhinus hilaris Peringuey, 1901  35 13 195 36 
sp. 1  1 0 0 0 
sp. 2  1 0 0 0 
sp. 3  12 7 1 4 

F: Leiodidae      
cf. Colenis sp.   0 1 0 0 

sp. 2  1 0 0 0 
sp. 3  0 0 1 0 
sp. 4  2 3 0 0 

F: Ptiliidae      
sp.   20 12 9 4 

F: Scydmaenidae      
sp. 1  71 16 29 5 
sp. 2  0 0 2 0 

F: Staphylinidae      
SubF: Aleocharinae      

Leucocraspedina sp.   4 0 0 0 
sp. 1  20 4 12 5 
sp. 2  21 6 19 6 
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sp. 3  55 1 2 0 
SubF: Omaliinae      

cf. Xylostiba sp.   0 1 2 1 
SubF: Oxytelinae      

Thinodromus sp.   0 1 0 0 
SubF: Paederinae      

(Euplectini) sp.  0 1 3 0 
(Euplectitae) not complete sp.  0 22 0 0 
Neoraffrayia sp.  60 12 17 0 

Neoraffrayia variabilis (Raffray, 1897)  4 2 0 0 
Novoclaviger joncooteri Hlaváč, 2006  0 1 0 0 
Pselaphaulax sp.   0 0 2 0 
Pselaphocerus amicus Raffray, 1898  2 0 0 0 
Pselaphocerus sp.   1 0 0 0 
Pseudotychus nigerrimus Raffray, 1897  4 1 0 0 
Raffraya sp.  2 0 0 0 
Raffrayidius sp.  17 4 0 0 
Raffrayola sp.  3 0 1 0 
sp. 4  13 1 73 4 
sp. 5  27 4 40 6 
Typhloraffrayia sp.  0 1 0 0 
unidentified  11 1 4 0 
Xenogyna sp.  1 6 1 3 

SubF: Staphylininae      
cf. Notolinus sp.   0 1 0 1 
Quedius sp.  2 0 14 1 
Philonthus sp.   18 0 0 0 

SubF: Steninae      
Stenus sp.   0 3 1 0 

SubF: Tachyporinae      
Mycetoporus sp.   4 0 2 3 
Sepedophilus sp. 1   227 0 9 6 
Sepedophilus sp. 2   90 2 17 1 

Sepedophilus sp. 3   1 3 0 0 
Sepedophilus sp. 4   4 1 1 0 
Tachyporus sp.   1 0 0 4 

O: Diptera      
F: Asilidae      

sp.   0 0 1 0 
F: Calliphoridae      

Lucilia sp.   0 0 1 1 
sp.   7 0 0 0 

F: Cecidomyiidae      
sp.   1 0 0 0 

F: Chironomidae      
sp.   0 2 0 2 

Species    Forest Fynbos Pine Felled 

F: Dolichopodidae      
sp. 1  0 1 0 0 
sp. 2  0 4 0 0 

F: Drosophilidae      
Drosophila sp. 1   91 1 7 1 
Drosophila sp. 2   47 0 21 2 
Drosophila sp. 3   0 1 0 3 
Zaprionus sp.   6 0 1 0 

F: Heliomyzidae      

cf. Suilla sp.  10 0 0 0 
F: Neriidae      

Chaetonerius sp.   1 26 0 0 
F: Phoridae      

sp.   298 38 301 39 
F: Sciaridae      

sp. 1  0 2 1 0 
sp. 2  160 132 218 50 

F: Tachinidae      
sp.   0 0 0 1 

F: Tipulidae      
sp. 1  3 0 0 0 
sp. 2  1 328 0 0 

F: unidentified      
sp. 3  1 52 0 2 
sp. 6  1 5 70 6 
sp. 7  13 1 0 0 
sp. 8  0 6 0 1 
sp. 9  11 0 0 1 
sp. 10  5 0 6 0 
sp. 11  6 2 2 1 
sp. 12  0 1 2 6 
sp. 13  4 11 6 4 
sp. 14  13 0 5 0 

sp. 15  3 1 0 0 
sp. 16  2 1 0 0 
sp. 17  0 0 0 3 
sp. 18  3 0 0 0 
sp. 19  1 0 1 0 
sp. 20  4 0 0 0 
sp. 21  1 0 0 2 
sp. 22  0 1 0 1 
sp. 23  0 2 0 0 
sp. 24  0 2 4 0 
sp. 26  0 2 0 0 
sp. 27  0 0 2 0 
sp. 28  3 0 0 0 
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sp. 29  1 0 0 0 
sp. 30  2 0 0 0 
sp. 31  1 0 0 0 
sp. 32  1 0 0 0 
sp. 33  0 0 1 0 
sp. 34  0 0 1 0 
sp. 35  0 1 0 0 
sp. 36  0 0 1 0 
sp. 37  1 0 0 0 

sp. 38  1 0 0 0 
sp. 39  1 1 0 0 
sp. 41  1 0 0 0 
sp. 42  1 0 0 0 
sp. 43  1 0 0 0 
sp. 44  1 0 0 0 
sp. 45  1 0 0 0 
sp. 46  0 1 0 0 
sp. 47  1 0 0 0 
sp. 48  1 0 0 0 
sp. 49  1 0 0 0 
sp. 50  0 0 1 0 
sp. 51  0 0 1 0 
sp. 52  0 0 1 0 
sp. 53  0 0 1 0 
sp. 54  0 0 0 1 
sp. 55  0 0 0 1 
sp. 56  0 0 0 1 
sp. 57  0 0 0 1 
sp. 58  1 0 0 0 
sp. 59  0 0 0 1 
sp. 60  1 0 0 0 
sp. 61  0 2 0 0 
sp. 62  0 0 1 0 

sp. 63  0 0 1 0 
sp. 64  0 0 0 1 
sp. 65  0 0 0 1 
sp. 66  0 3 0 1 

O: Lepidoptera      
unidentified  151 14 8 33 

O: Hymenoptera      
F: Mutillidae      

sp. 1  0 1 1 0 
sp. 3  0 1 0 0 
sp. 4  0 1 0 0 

F: Bethylidae      
sp.   0 0 1 0 

Species    Forest Fynbos Pine Felled 

F: Ichneumonidae      
sp. 1  1 0 0 0 
sp. 2  1 0 0 0 
sp. 3  0 0 1 0 

F: Chalcidoidea      
sp. 1  0 0 0 1 
sp. 2  0 0 2 0 
sp. 3  0 0 1 0 
sp. 4  0 0 1 0 

F: Sphecidae      
sp.   0 1 0 0 

F: Pompilidae      
sp. 1  0 0 1 0 
sp. 2  0 1 1 2 
sp. 3  0 0 0 1 
sp. 4  0 1 0 0 
sp. 5  0 0 0 1 
sp. 6  0 1 0 1 
sp. 7  0 0 0 1 
sp. 8  0 0 0 1 
sp. 9  1 0 0 0 

F: Braconidae      
sp.   5 1 1 0 

F: unidentified      
sp. 24  0 2 0 0 
sp. 25  3 9 1 9 
sp. 26  28 0 1 0 
sp. 27  21 0 5 3 
sp. 28  22 0 8 1 
sp. 29  12 1 13 1 
sp. 30  20 0 3 1 
sp. 31  42 5 0 0 
sp. 32  2 4 1 3 

sp. 33  0 1 4 5 
sp. 34  4 3 2 1 
sp. 35  5 0 3 0 
sp. 36  20 1 0 0 
sp. 37  2 0 2 1 
sp. 38  1 0 1 4 
sp. 39  3 1 2 2 
sp. 40  5 0 1 9 
sp. 41  6 0 0 0 
sp. 42  6 0 1 0 
sp. 43  2 0 0 14 
sp. 44  0 0 6 0 
sp. 45  14 0 1 0 
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sp. 46  1 2 0 3 
sp. 47  0 1 0 4 
sp. 48  1 0 1 2 
sp. 49  3 0 1 0 
sp. 50  1 0 2 0 
sp. 51  0 0 6 0 
sp. 52  3 0 0 0 
sp. 53  3 0 0 0 
sp. 54  3 0 0 0 

sp. 55  2 0 2 0 
sp. 56  2 0 0 0 
sp. 57  2 0 0 0 
sp. 58  3 0 0 0 
sp. 59  4 0 0 0 
sp. 60  2 0 0 0 
sp. 61  1 0 1 0 
sp. 62  2 0 0 0 
sp. 63  0 0 0 2 
sp. 64  2 0 0 0 
sp. 65  2 0 0 0 
sp. 66  0 0 1 1 
sp. 67  0 1 0 1 
sp. 68  0 2 0 0 
sp. 69  0 0 0 2 
sp. 70  1 0 0 0 
sp. 71  1 0 0 0 
sp. 72  0 0 1 0 
sp. 73  0 1 0 0 
sp. 74  0 1 0 0 
sp. 75  0 0 1 0 
sp. 76  1 0 0 0 
sp. 77  1 1 0 0 
sp. 78  0 1 0 0 

sp. 79  0 1 0 0 
sp. 81  1 0 0 0 
sp. 82  1 0 0 0 
sp. 83  1 0 0 0 
sp. 84  1 0 0 0 
sp. 85  1 0 0 0 
sp. 86  1 0 0 0 
sp. 87  1 0 0 0 
sp. 88  2 0 0 0 
sp. 89  1 0 0 0 
sp. 90  1 0 0 0 
sp. 91  1 0 0 0 
sp. 92  1 0 0 0 

Species    Forest Fynbos Pine Felled 

sp. 93  1 0 0 0 
sp. 94  1 0 0 0 
sp. 95  1 0 0 0 
sp. 96  1 0 0 0 
sp. 98  0 0 0 1 
sp. 99  1 0 0 0 
sp. 100  1 0 0 0 
sp. 101  0 1 0 0 
sp. 102  0 0 1 0 

sp. 103  0 0 1 0 
sp. 104  0 0 0 1 
sp. 105  0 0 0 1 
sp. 106  0 0 0 2 
sp. 107  0 0 0 1 
sp. 108  1 0 0 0 
sp. 109  1 0 0 0 
sp. 110  1 0 0 0 
sp. 111  1 0 0 0 
sp. 112  0 0 1 0 
sp. 113  0 0 0 1 
sp. 114  0 0 0 1 
sp. 115  1 0 0 0 
sp. 116  1 0 0 0 
sp. 117  0 0 0 1 
sp. 118  0 0 0 1 
sp. 119  2 0 0 0 
sp. 120  1 0 0 0 
sp. 121  1 0 0 0 
sp. 122  1 0 0 0 
sp. 123  1 0 0 0 

F: Vespidae      
Vespula germanica (Fabricius, 1793) A 15 14 3 0 

F: Chrysididae      

SubF: Amiseginae      
Obenbergerella aenigmatica Bridwell, 1919  3 10 15 0 
Reidia turneri (hairy) Krombein, 1957  26 14 122 8 
Reidia turneri (few hairs) Krombein, 1957  38 0 45 0 

F: Apidae      
Apis mellifera Linnaeus, 1758  0 1 0 0 

F: Halictidae      
sp. 1  0 2 0 0 
sp. 2  0 2 0 0 

F: Formicidae      
SubF: Dolichoderinae      

Linepithema humile Mayr, 1868 A 15829 4546 5841 6681 
Tapinoma sp.   0 757 265 0 
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Technomyrmex pallipes (Smith, 1876)  0 1325 13 11 
SubF:Formicinae      

Camponotus bertolonii Emery, 1895  54 371 149 2 
Camponotus niveosetosus Mayr, 1862  36 742 12 12 
Camponotus sp. 1 (maculatus group)   0 371 0 101 
Camponotus sp. 2 (maculatus group)   595 4360 123 161 
Lepisiota capensis (Mayr, 1862)  5 9040 25 4824 

SubF: Myrmicinae      
Crematogaster sp.   806 3465 0 393 

Meranoplus sp.   281 474 1 116 
Monomorium sp.   3089 891 5278 1253 
Myrmicaria nigra (Mayr, 1862)  0 284 0 87 
Pheidole capensis Mayr, 1862  0 1545 0 4 
Tetramorium grassii Emery, 1895  3994 1099 1687 1043 
Tetramorium sp.   2109 319 131 1294 

SubF: Ponerinae      
Hagensia peringueyi (Emery, 1899)  0 252 0 121 

SubF: Pseudomyrmicinae      
Tetraponera sp.   21 37 21 6 

C: DIPLOPODA           
O: Polyxenida      
F: Synexidae      

Phryssonotus sp. nov.   0 7 11 4 
F: Polyxenidae      

Propolyxenus sp. nov.   3 1 0 1 
O: Spaerotheriida      

F: Sphaerotheriidae      
Sphaerotherium capense Schubart  4 0 5 0 
Sphaerotherium commune Attems, 1928  2 1 1 0 
Sphaerotherium sp.   22 3 6 0 

O: Polydesmida      
F: Vaalogonopidae      

Hemiphygoxerotes crinitus Attems, 1944   6 2 11 0 

F: Dalodesmidae      
cf. Gnomeskelus sp.   0 2 3 0 

Species    Forest Fynbos Pine Felled 

O: Spirobolida      
F: Pachybolidae      

Centrobolus diagramus  16 0 0 0 
O: Spirostreptida      
F: Iulomorphidae      

Julomorpha sp.  291 1 66 70 
F: Cambalidae      

Ommatoiulus moreleti (Lucas, 1860) A 508 152 546 292 

C: CHILOPODA           
O: Geophilomorpha      

sp.   51 21 22 9 
O: Lithobiomorpha      
F: Henicopidae      

Anopsobius sp.   38 3 0 4 
Paralamyctes sp. 1   10 3 4 0 
Paralamyctes sp. 2   4 0 2 0 
Paralamyctes sp. 3   2 1 0 0 
Paralamyctes sp. 4   5 0 1 0 

F: unidentified      
sp. 1  1 0 1 1 
sp. 2  5 1 12 10 

O: Scolopendromorpha      
F: Cryptopsidae      

Cryptops sp.   6 9 4 0 
F: Scolopendridae      

Cormocephalus sp.   12 2 21 7 
F: Scutigerinidae      

Scutigerina weberi Silvestri, 1903  0 0 7 1 

C: UDEONYCHOPHORA           

O: Ontonychophora      

F: Peripatopsidae      

Peripatopsis balfouri (Sedgwick, 1885) spp. complex   6 0 2 2 

Peripatopsis stelliporata Sherbon and Walker, 2004   0 0 0 1 
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